Do you want to publish a course? Click here

Context-Dependent Semantic Parsing over Temporally Structured Data

70   0   0.0 ( 0 )
 Added by Charles Chen
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We describe a new semantic parsing setting that allows users to query the system using both natural language questions and actions within a graphical user interface. Multiple time series belonging to an entity of interest are stored in a database and the user interacts with the system to obtain a better understanding of the entitys state and behavior, entailing sequences of actions and questions whose answers may depend on previous factual or navigational interactions. We design an LSTM-based encoder-decoder architecture that models context dependency through copying mechanisms and multiple levels of attention over inputs and previous outputs. When trained to predict tokens using supervised learning, the proposed architecture substantially outperforms standard sequence generation baselines. Training the architecture using policy gradient leads to further improvements in performance, reaching a sequence-level accuracy of 88.7% on artificial data and 74.8% on real data.



rate research

Read More

Semantic parsing is the task of translating natural language utterances into machine-readable meaning representations. Currently, most semantic parsing methods are not able to utilize contextual information (e.g. dialogue and comments history), which has a great potential to boost semantic parsing performance. To address this issue, context dependent semantic parsing has recently drawn a lot of attention. In this survey, we investigate progress on the methods for the context dependent semantic parsing, together with the current datasets and tasks. We then point out open problems and challenges for future research in this area. The collected resources for this topic are available at:https://github.com/zhuang-li/Contextual-Semantic-Parsing-Paper-List.
Semantic parsing has long been a fundamental problem in natural language processing. Recently, cross-domain context-dependent semantic parsing has become a new focus of research. Central to the problem is the challenge of leveraging contextual information of both natural language utterance and database schemas in the interaction history. In this paper, we present a dynamic graph framework that is capable of effectively modelling contextual utterances, tokens, database schemas, and their complicated interaction as the conversation proceeds. The framework employs a dynamic memory decay mechanism that incorporates inductive bias to integrate enriched contextual relation representation, which is further enhanced with a powerful reranking model. At the time of writing, we demonstrate that the proposed framework outperforms all existing models by large margins, achieving new state-of-the-art performance on two large-scale benchmarks, the SParC and CoSQL datasets. Specifically, the model attains a 55.8% question-match and 30.8% interaction-match accuracy on SParC, and a 46.8% question-match and 17.0% interaction-match accuracy on CoSQL.
We present SParC, a dataset for cross-domainSemanticParsing inContext that consists of 4,298 coherent question sequences (12k+ individual questions annotated with SQL queries). It is obtained from controlled user interactions with 200 complex databases over 138 domains. We provide an in-depth analysis of SParC and show that it introduces new challenges compared to existing datasets. SParC demonstrates complex contextual dependencies, (2) has greater semantic diversity, and (3) requires generalization to unseen domains due to its cross-domain nature and the unseen databases at test time. We experiment with two state-of-the-art text-to-SQL models adapted to the context-dependent, cross-domain setup. The best model obtains an exact match accuracy of 20.2% over all questions and less than10% over all interaction sequences, indicating that the cross-domain setting and the con-textual phenomena of the dataset present significant challenges for future research. The dataset, baselines, and leaderboard are released at https://yale-lily.github.io/sparc.
The structured representation for semantic parsing in task-oriented assistant systems is geared towards simple understanding of one-turn queries. Due to the limitations of the representation, the session-based properties such as co-reference resolution and context carryover are processed downstream in a pipelined system. In this paper, we propose a semantic representation for such task-oriented conversational systems that can represent concepts such as co-reference and context carryover, enabling comprehensive understanding of queries in a session. We release a new session-based, compositional task-oriented parsing dataset of 20k sessions consisting of 60k utterances. Unlike Dialog State Tracking Challenges, the queries in the dataset have compositional forms. We propose a new family of Seq2Seq models for the session-based parsing above, which achieve better or comparable performance to the current state-of-the-art on ATIS, SNIPS, TOP and DSTC2. Notably, we improve the best known results on DSTC2 by up to 5 points for slot-carryover.
188 - Robin Jia , Percy Liang 2016
Modeling crisp logical regularities is crucial in semantic parsing, making it difficult for neural models with no task-specific prior knowledge to achieve good results. In this paper, we introduce data recombination, a novel framework for injecting such prior knowledge into a model. From the training data, we induce a high-precision synchronous context-free grammar, which captures important conditional independence properties commonly found in semantic parsing. We then train a sequence-to-sequence recurrent network (RNN) model with a novel attention-based copying mechanism on datapoints sampled from this grammar, thereby teaching the model about these structural properties. Data recombination improves the accuracy of our RNN model on three semantic parsing datasets, leading to new state-of-the-art performance on the standard GeoQuery dataset for models with comparable supervision.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا