No Arabic abstract
A workshop, Probing strong-field QED in electron--photon interactions, was held in DESY, Hamburg in August 2018, gathering together experts from around the world in this area of physics as well as the accelerator, laser and detector technology that underpins any planned experiment. The aim of the workshop was to bring together experts and those interested in measuring QED in the presence of strong fields at and above the Schwinger critical field. The pioneering experiment, E144 at SLAC, measured multi-photon absorption in Compton scattering and $e^+e^-$ pair production in electron--photon interactions but never reached the Schwinger critical field value. With the advances in laser technology, in particular, new experiments are being considered which should be able to measure non-perturbative QED and its transition from the perturbative regime. This workshop reviewed the physics case and current theoretical predictions for QED and even effects beyond the Standard Model in the interaction of a high-intensity electron bunch with the strong field of the photons from a high-intensity laser bunch. The worlds various electron beam facilities were reviewed, along with the challenges of producing and delivering laser beams to the interaction region. Possible facilities and sites that could host such experiments were presented, with a view to experimentally realising the Schwinger critical field in the lab during the 2020s.
Recent highlights from the HERA experiments, Hermes, H1 and ZEUS, are reviewed and ideas for future analyses to fully exploit this unique data set are proposed. This document is a summary of a workshop on future physics with HERA data held at DESY, Hamburg at the end of 2014. All areas of HERA physics are covered and contributions from both experimentalists and theorists are included. The document outlines areas where HERA physics can still make a significant contribution, principally in a deeper understanding of QCD, and its relevance to other facilities. Within the framework of the Data Preservation in High Energy Physics, the HERA data have been preserved for analyses to take place over a timescale of 10 years and more. Therefore, although an extensive list of possibilities is presented here, safe storage of the data ensures that it can also be used in the far future should new ideas and analyses be proposed.
A neutrino community workshop was held at Fermilab in Jan 2020, with the aim of developing an implementation plan for a set of common interfaces to Neutrino Event Generators. This white paper summarizes discussions at the workshop and the resulting plan.
The topical workshop {it Strong QCD from Hadron Structure Experiments} took place at Jefferson Lab from Nov. 6-9, 2019. Impressive progress in relating hadron structure observables to the strong QCD mechanisms has been achieved from the {it ab initio} QCD description of hadron structure in a diverse array of methods in order to expose emergent phenomena via quasi-particle formation. The wealth of experimental data and the advances in hadron structure theory make it possible to gain insight into strong interaction dynamics in the regime of large quark-gluon coupling (the strong QCD regime), which will address the most challenging problems of the Standard Model on the nature of the dominant part of hadron mass, quark-gluon confinement, and the emergence of the ground and excited state hadrons, as well as atomic nuclei, from QCD. This workshop aimed to develop plans and to facilitate the future synergistic efforts between experimentalists, phenomenologists, and theorists working on studies of hadron spectroscopy and structure with the goal to connect the properties of hadrons and atomic nuclei available from data to the strong QCD dynamics underlying their emergence from QCD. These results pave the way for a future breakthrough extension in the studies of QCD with an Electron-Ion Collider in the U.S.
This document contains a summary of the LHCb workshop on multi-body decays of D and B mesons, held at CBPF, Rio de Janeiro, in July 2015. The workshop was focused on issues related to amplitude analysis of three- and four-body hadronic decays. In addition to selected LHCb results, contributions from guest theorists are included.
This document reports the first year of activity of the VBSCan COST Action network, as summarised by the talks and discussions happened during the VBSCan Thessaloniki 2018 workshop. The VBSCan COST action is aiming at a consistent and coordinated study of vector-boson scattering from the phenomenological and experimental point of view, for the best exploitation of the data that will be delivered by existing and future particle colliders.