Do you want to publish a course? Click here

An Inpainting Approach to Tackle the Kinematic and Thermal SZ Induced Biases in CMB-Cluster Lensing Estimators

60   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

A galaxy clusters own Sunyaev-Zel{}dovich (SZ) signal is known to be a major contaminant when reconstructing the clusters underlying lensing potential using cosmic microwave background (CMB) temperature maps. In this work, we develop a modified quadratic estimator (QE) that is designed to mitigate the lensing biases due to the kinematic and thermal SZ effects. The idea behind the approach is to use inpainting to eliminate the clusters own emission from the large-scale CMB gradient map. In this inpainted gradient map, we fill the pixel values at the cluster location using a constrained Gaussian realization based on the information from surrounding regions. We show that the noise induced due to inpainting process is small compared to other noise sources for upcoming surveys and has minimal impact on the final lensing signal-to-noise. Without any foreground cleaning, we find a stacked mass uncertainty of 6.5% for the CMB-S4 experiment on a cluster sample containing 5000 clusters with $M_{200c} = 2 times 10^{14} M_{odot}$ at z = 0.7. In addition to the SZ-induced lensing biases, we also quantify the low mass bias arising due to the contamination of the CMB gradient by the cluster convergence. For the fiducial cluster sample considered in this work, we find that bias is negligible compared to the statistical uncertainties for both the standard and the modified QE even when modes up to $sim 2700$ are used for the gradient estimation. With more gradient modes, we demonstrate that the sensitivity can be increased by 14% compared to the fiducial result above with gradient modes up to $2000$



rate research

Read More

In recent years, weak lensing of the cosmic microwave background (CMB) has emerged as a powerful tool to probe fundamental physics, such as neutrino masses, primordial non-Gaussianity, dark energy, and modified gravity. The prime target of CMB lensing surveys is the lensing potential, which is reconstructed from observed CMB temperature $T$ and polarization $E$ and $B$ fields. Until very recently, this reconstruction has been performed with quadratic estimators (QEs), which, although known to be suboptimal for high-sensitivity experiments, are numerically efficient, and useful to make forecasts and cross-check the results of more sophisticated likelihood-based methods. It is expected that ongoing and near-future CMB experiments such as AdvACT, SPT-3G and the Simons Observatory (SO), will also rely on QEs. Here, we review different QEs, and clarify their differences. In particular, we show that the Hu-Okamoto (HO02) estimator is not the absolute optimal lensing estimator that can be constructed out of quadratic combinations of $T, E$ and $B$ fields. Instead, we derive the global-minimum-variance (GMV) lensing quadratic estimator. Although this estimator can be found elsewhere in the literature, it was erroneously described as equivalent to the HO02 estimator, and has never been used in real data analyses. Here, we show explicitly that the HO02 estimator is suboptimal to the GMV estimator, with a reconstruction noise larger by up to $sim 9%$ for a SO-like experiment. We further show that the QE used in the Planck, and recent SPT lensing analysis are suboptimal to both the HO02 and GMV estimator, and would have a reconstruction noise up to $sim 11%$ larger than that of the GMV estimator for a SO-like experiment. In addition to clarifying differences between different QEs, this work should thus provide motivation to implement the GMV estimator in future lensing analyses relying on QEs.
Precise polarisation measurements of the cosmic microwave background (CMB) require accurate knowledge of the instrument orientation relative to the sky frame used to define the cosmological Stokes parameters. Suitable celestial calibration sources that could be used to measure the polarimeter orientation angle are limited, so current experiments commonly `self-calibrate. The self-calibration method exploits the theoretical fact that the $EB$ and $TB$ cross-spectra of the CMB vanish in the standard cosmological model, so any detected $EB$ and $TB$ signals must be due to systematic errors. However, this assumption neglects the fact that polarized Galactic foregrounds in a given portion of the sky may have non-zero $EB$ and $TB$ cross-spectra. If these foreground signals remain in the observations, then they will bias the self-calibrated telescope polarisation angle and produce a spurious $B$-mode signal. In this paper we estimate the foreground-induced bias for various instrument configurations and then expand the self-calibration formalism to account for polarized foreground signals. Assuming the $EB$ correlation signal for dust is in the range constrained by angular power spectrum measurements from Planck at 353 GHz (scaled down to 150 GHz), then the bias is negligible for high angular resolution experiments, which have access to CMB-dominated high $ell$ modes with which to self-calibrate. Low-resolution experiments observing particularly dusty sky patches can have a bias as large as $0.5^circ$. A miscalibration of this magnitude generates a spurious $BB$ signal corresponding to a tensor-to-scalar ratio of approximately $rsim2times10^{-3}$, within the targeted range of planned experiments.
We forecast the number of galaxy clusters that can be detected via the thermal Sunyaev-Zeldovich (tSZ) signals by future cosmic microwave background (CMB) experiments, primarily the wide area survey of the CMB-S4 experiment but also CMB-S4s smaller delensing survey and the proposed CMB-HD experiment. We predict that CMB-S4 will detect 75,000 clusters with its wide survey of $f_{rm sky}$ = 50% and 14,000 clusters with its deep survey of $f_{rm sky}$ = 3%. Of these, approximately 1350 clusters will be at $z ge 2$, a regime that is difficult to probe by optical or X-ray surveys. We assume CMB-HD will survey the same sky as the S4-Wide{}, and find that CMB-HD will detect $times3$ more overall and an order of magnitude more $z ge 2$ clusters than CMB-S4. These results include galactic and extragalactic foregrounds along with atmospheric and instrumental noise. Using CMB-cluster lensing to calibrate cluster tSZ-mass scaling relation, we combine cluster counts with primary CMB to obtain cosmological constraints for a two parameter extension of the standard model ($Lambda CDM+sum m_{ u}+w_{0}$). Besides constraining $sigma(w_{0})$ to $lesssim 1%$, we find that both surveys can enable a $sim 2.5-4.5sigma$ detection of $sum m_{ u}$, substantially strengthening CMB-only constraints. We also study the evolution of intracluster medium by modelling the cluster virialization ${rm v}(z)$ and find tight constraints from CMB-S4, with further factors of 3-4 improvement for CMB-HD.
Sunyaev-Zeldovich (SZ) surveys are promising probes of cosmology - in particular for Dark Energy (DE) -, given their ability to find distant clusters and provide estimates for their mass. However, current SZ catalogs contain tens to hundreds of objects and maximum likelihood estimators may present biases for such sample sizes. In this work we use the Monte Carlo approach to determine the presence of bias on cosmological parameter estimators from cluster abundance as a function of the area and depth of the survey, and the number of cosmological parameters fitted. Assuming perfect knowledge of mass and redshift some estimators have non-negligible biases. For example, the bias of $sigma_8$ corresponds to about $40%$ of its statistical error bar when fitted together with $Omega_c$ and $w_0$. Including a SZ mass-observable relation decreases the relevance of the bias, for the typical sizes of current surveys. The biases become negligible when combining the SZ data with other cosmological probes. However, we show that the biases from SZ estimators do not go away with increasing sample sizes and they may become the dominant source of error for an all sky survey at the South Pole Telescope (SPT) sensitivity. The results of this work validate the use of the current maximum likelihood methods for present SZ surveys, but highlight the need for further studies for upcoming experiments. [abridged]
Galaxy cluster merger shocks are the main agent for the thermalization of the intracluster medium and the energization of cosmic ray particles in it. Shock propagation changes the state of the tenuous intracluster plasma, and the corresponding signal variations are measurable with the current generation of X-ray and Sunyaev-Zeldovich (SZ) effect instruments. Additionally, non-thermal electrons (re-)energized by the shocks sometimes give rise to extended and luminous synchrotron sources known as radio relics, which are prominent indicators of shocks propagating roughly in the plane of the sky. In this short review, we discuss how the joint modeling of the non-thermal and thermal signal variations across radio relic shock fronts is helping to advance our knowledge of the gas thermodynamical properties and magnetic field strengths in the cluster outskirts. We describe the first use of the SZ effect to measure the Mach numbers of relic shocks, for both the nearest (Coma) and the farthest (El Gordo) clusters with known radio relics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا