Do you want to publish a course? Click here

Active Manifolds: A non-linear analogue to Active Subspaces

49   0   0.0 ( 0 )
 Added by Robert Bridges
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We present an approach to analyze $C^1(mathbb{R}^m)$ functions that addresses limitations present in the Active Subspaces (AS) method of Constantine et al.(2015; 2014). Under appropriate hypotheses, our Active Manifolds (AM) method identifies a 1-D curve in the domain (the active manifold) on which nearly all values of the unknown function are attained, and which can be exploited for approximation or analysis, especially when $m$ is large (high-dimensional input space). We provide theorems justifying our AM technique and an algorithm permitting functional approximation and sensitivity analysis. Using accessible, low-dimensional functions as initial examples, we show AM reduces approximation error by an order of magnitude compared to AS, at the expense of more computation. Following this, we revisit the sensitivity analysis by Glaws et al. (2017), who apply AS to analyze a magnetohydrodynamic power generator model, and compare the performance of AM on the same data. Our analysis provides detailed information not captured by AS, exhibiting the influence of each parameter individually along an active manifold. Overall, AM represents a novel technique for analyzing functional models with benefits including: reducing $m$-dimensional analysis to a 1-D analogue, permitting more accurate regression than AS (at more computational expense), enabling more informative sensitivity analysis, and granting accessible visualizations(2-D plots) of parameter sensitivity along the AM.



rate research

Read More

65 - Avrim Blum , Lunjia Hu 2017
In this work, we give the first algorithms for tolerant testing of nontrivial classes in the active model: estimating the distance of a target function to a hypothesis class C with respect to some arbitrary distribution D, using only a small number of label queries to a polynomial-sized pool of unlabeled examples drawn from D. Specifically, we show that for the class D of unions of d intervals on the line, we can estimate the error rate of the best hypothesis in the class to an additive error epsilon from only $O(frac{1}{epsilon^6}log frac{1}{epsilon})$ label queries to an unlabeled pool of size $O(frac{d}{epsilon^2}log frac{1}{epsilon})$. The key point here is the number of labels needed is independent of the VC-dimension of the class. This extends the work of Balcan et al. [2012] who solved the non-tolerant testing problem for this class (distinguishing the zero-error case from the case that the best hypothesis in the class has error greater than epsilon). We also consider the related problem of estimating the performance of a given learning algorithm A in this setting. That is, given a large pool of unlabeled examples drawn from distribution D, can we, from only a few label queries, estimate how well A would perform if the entire dataset were labeled? We focus on k-Nearest Neighbor style algorithms, and also show how our results can be applied to the problem of hyperparameter tuning (selecting the best value of k for the given learning problem).
We introduce a new framework for sample-efficient model evaluation that we call active testing. While approaches like active learning reduce the number of labels needed for model training, existing literature largely ignores the cost of labeling test data, typically unrealistically assuming large test sets for model evaluation. This creates a disconnect to real applications, where test labels are important and just as expensive, e.g. for optimizing hyperparameters. Active testing addresses this by carefully selecting the test points to label, ensuring model evaluation is sample-efficient. To this end, we derive theoretically-grounded and intuitive acquisition strategies that are specifically tailored to the goals of active testing, noting these are distinct to those of active learning. As actively selecting labels introduces a bias; we further show how to remove this bias while reducing the variance of the estimator at the same time. Active testing is easy to implement and can be applied to any supervised machine learning method. We demonstrate its effectiveness on models including WideResNets and Gaussian processes on datasets including Fashion-MNIST and CIFAR-100.
The transition state (TS) calculation is a grand challenge for computational intensive energy function. The traditional methods need to evaluate the gradients of the energy function at a very large number of locations. To reduce the number of expensive computations of the true gradients, we propose an active learning framework consisting of a statistical surrogate model, Gaussian process regression (GPR) for the energy function, and a single-walker dynamics method, gentle accent dynamics (GAD), for the saddle-type transition states. TS is detected by the GAD applied to the GPR surrogate for the gradient vector and the Hessian matrix. Our key ingredient for efficiency improvements is an active learning method which sequentially designs the most informative locations and takes evaluations of the original model at these locations to train GPR. We formulate this active learning task as the optimal experimental design problem and propose a very efficient sample-based sub-optimal criterion to construct the optimal locations. We show that the new method significantly decreases the required number of energy or force evaluations of the original model.
Active learning is a powerful tool when labelling data is expensive, but it introduces a bias because the training data no longer follows the population distribution. We formalize this bias and investigate the situations in which it can be harmful and sometimes even helpful. We further introduce novel corrective weights to remove bias when doing so is beneficial. Through this, our work not only provides a useful mechanism that can improve the active learning approach, but also an explanation of the empirical successes of various existing approaches which ignore this bias. In particular, we show that this bias can be actively helpful when training overparameterized models -- like neural networks -- with relatively little data.
Broad adoption of machine learning techniques has increased privacy concerns for models trained on sensitive data such as medical records. Existing techniques for training differentially private (DP) models give rigorous privacy guarantees, but applying these techniques to neural networks can severely degrade model performance. This performance reduction is an obstacle to deploying private models in the real world. In this work, we improve the performance of DP models by fine-tuning them through active learning on public data. We introduce two new techniques - DIVERSEPUBLIC and NEARPRIVATE - for doing this fine-tuning in a privacy-aware way. For the MNIST and SVHN datasets, these techniques improve state-of-the-art accuracy for DP models while retaining privacy guarantees.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا