Do you want to publish a course? Click here

Stochastic gravitational wave background from accreting primordial black hole binaries during early inspiral stage

165   0   0.0 ( 0 )
 Added by Arnab Sarkar
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the stochastic gravitational wave background produced by primordial black hole binaries during their early inspiral stage while accreting high-density radiation surrounding them in the early universe. We first show that the gravitational wave amplitude produced from a primordial black hole binary has correction terms because of the rapid rate of increase in masses of the primordial black holes. These correction terms arise due to non-vanishing first and second time derivatives of the masses and their contribution to the overall second time derivative of quadrupole moment tensor. We find that some of these correction terms are not only significant in comparison with the main term but even dominant over the main term for certain ranges of time in the early Universe. The significance of these correction terms is not only for the gravitational wave amplitude produced from an individual PBH-binary, but persists for the overall stochastic gravitational wave background produced from them. We show that the spectral density produced from such accreting primordial black hole binaries lie within the detectability range of some present and future gravitational wave detectors.



rate research

Read More

Primordial Black Holes (PBH) from peaks in the curvature power spectrum could constitute today an important fraction of the Dark Matter in the Universe. At horizon reentry, during the radiation era, order one fluctuations collapse gravitationally to form black holes and, at the same time, generate a stochastic background of gravitational waves coming from second order anisotropic stresses in matter. We study the amplitude and shape of this background for several phenomenological models of the curvature power spectrum that can be embedded in waterfall hybrid inflation, axion, domain wall, and boosts of PBH formation at the QCD transition. For a broad peak or a nearly scale invariant spectrum, this stochastic background is generically enhanced by about one order of magnitude, compared to a sharp feature. As a result, stellar-mass PBH from Gaussian fluctuations with a wide mass distribution are already in strong tension with the limits from Pulsar Timing Arrays, if they constitute a non negligible fraction of the Dark Matter. But this result is mitigated by the uncertainties on the curvature threshold leading to PBH formation. LISA will have the sensitivity to detect or rule out light PBH down to $10^{-14} M_{odot}$. Upcoming runs of LIGO/Virgo and future interferometers such as the Einstein Telescope will increase the frequency lever arm to constrain PBH from the QCD transition. Ultimately, the future SKA Pulsar Timing Arrays could probe the existence of even a single stellar-mass PBH in our Observable Universe.
Baryonic gas falling onto a primordial black hole (PBH) emits photons via the free-free process. These photons can contribute the diffuse free-free background radiation in the frequency range of the cosmic microwave background radiation (CMB). We show that the intensity of the free-free background radiation from PBHs depends on the mass and abundance of PBHs. In particular, considering the growth of a dark matter (DM) halo around a PBH by non-PBH DM particles strongly enhances the free-free background radiation. Large PBH fraction increase the signal of the free-free emission. However, large PBH fraction also can heat the IGM gas and, accordingly, suppresses the accretion rate. As a result, the free-free emission decreases when the PBH fraction is larger than 0.1. We find that the free-free emission from PBHs in the CMB and radio frequency is much lower than the CMB blackbody spectrum and the observed free-free emission component in the background radiation. Therefore, it is difficult to obtain the constraint from the free-free emission observation. However further theoretical understanding and observation on the free-free emission from cosmological origin is helpful to study the PBH abundance with the stellar mass.
The merger rate of black hole binaries inferred from the detections in the first Advanced LIGO science run, implies that a stochastic background produced by a cosmological population of mergers will likely mask the primordial gravitational-wave background. Here we demonstrate that the next generation of ground-based detectors, such as the Einstein Telescope and Cosmic Explorer, will be able to observe binary black hole mergers throughout the universe with sufficient efficiency that the confusion background can potentially be subtracted to observe the primordial background at the level of $Omega_{mathrm{GW}} simeq 10^{-13}$ after five years of observation.
Ultralight primordial black holes (PBHs) with masses $lesssim 10^{15}$g and subatomic Schwarzschild radii, produced in the early Universe, are expected to have evaporated by the current cosmic age due to Hawking radiation. Based on this assumption, a number of constraints on the abundance of ultralight PBHs have been made. However, Hawking radiation has thus far not been verified experimentally. It would, therefore, be of interest if constraints on ultralight PBHs could be placed independent of the assumption of Hawking-radiation. In this paper, we explore the possibility of probing these PBHs, within a narrow mass range, using gravitational-wave (GW) data from the two LIGO detectors. The idea is that large primordial curvature perturbations that result in the formation of PBHs, would also generate GWs through non-linear mode couplings. These induced GWs would produce a stochastic background. Specifically, we focus our attention on PBHs of mass range $sim 10^{13} - 10^{15}$g for which the induced stochastic GW background peak falls in the sensitivity band of LIGO. We find that, for both narrow and broad Gaussian PBH mass distributions, the corresponding GW background would be detectable using presently available LIGO data, provided we neglect the existing constraints on the abundance of PBHs, which are based on Hawking radiation. Furthermore, we find that these stochastic backgrounds would be detectable in LIGOs third observing run, even after considering the existing constraints on PBH abundance. A non-detection should enable us to constrain the amplitude of primordial curvature perturbations as well as the abundance of ultralight PBHs. We estimate that by the end of the third observing run, assuming non-detection, we should be able to place constraints that are orders of magnitude better than currently existing ones.
An observable stochastic background of gravitational waves is generated whenever primordial black holes are created in the early universe thanks to a small-scale enhancement of the curvature perturbation. We calculate the anisotropies and non-Gaussianity of such stochastic gravitational waves background which receive two contributions, the first at formation time and the second due to propagation effects. The former contribution can be generated if the distribution of the curvature perturbation is characterized by a local and scale-invariant shape of non-Gaussianity. Under such an assumption, we conclude that a sizeable magnitude of anisotropy and non-Gaussianity in the gravitational waves would suggest that primordial black holes may not comply the totality of the dark matter.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا