(Abridged) The purpose of this paper is to explore and compare the physical and chemical structure of Class I low-mass protostellar sources on protoplanetary disc scales. We present a study of the dust and gas emission towards a representative sample of 12 Class I protostars from the Ophiuchus molecular cloud with the Atacama Large Millimeter/submillimeter Array (ALMA). The continuum at 0.87 mm and molecular transitions from C17O, C34S, H13CO+, CH3OH, SO2 , and C2H were observed at high angular resolution (0.4, ~60 au diameter) towards each source. Disc and stellar masses are estimated from the continuum flux and position-velocity diagrams, and six of the sources show disc-like structures. Towards the more luminous sources, compact emission and large line widths are seen for transitions of SO2 that probe warm gas (Eu ~200 K). In contrast, C17O emission is detected towards the least evolved and less luminous systems. No emission of CH3OH is detected towards any of the continuum peaks, indicating an absence of warm CH3OH gas towards these sources. A power-law relation is seen between the stellar mass and the bolometric luminosity, corresponding to a mass accretion rate of (2.4 +/- 0.6) x 10^-7 Msun/year for the Class I sources. This mass accretion rate is lower than the expected value if the accretion is constant in time and rather points to a scenario of accretion occurring in bursts. The differentiation between C17O and SO2 suggests that they trace different physical components: C17O traces the densest and colder regions of the disc-envelope system, while SO2 may be associated with regions of higher temperature, such as accretion shocks. The lack of warm CH3OH emission suggests that there is no hot-core-like region around any of the sources and that the CH3OH column density averaged over the disc is low.