Do you want to publish a course? Click here

Dynamic Spatiotemporal Beams that Combine Two Independent and Controllable Orbital-Angular-Momenta Using Multiple Optical-Frequency-Comb Lines

127   0   0.0 ( 0 )
 Added by Zhe Zhao
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Novel forms of beam generation and propagation based on structured light and orbital angular momentum (OAM) have gained significant interest over the past several years. Indeed, dynamic OAM can manifest at a given propagation distance in different forms , including: (1) a simple Gaussian-like beam dot revolves around an offset central axis in time, and (2) a Laguerre-Gaussian (LG) beam with a helically twisting phase front that rotates around its own central null in time. In this paper, we numerically generate dynamic spatiotemporal beams that combine these two forms of orbital-angular-momenta by coherently adding multiple frequency comb lines such that each carries a superposition of multiple LG(l,p) modes containing one l value but multiple p values. The generated beams can have different non-zero rotating l values with high modal purities that exhibit both rotation and revolution in time at a given propagation distance. In our simulation results, we were able to control and vary several parameters, including the: (i) rotating l value from +1 to +3 with modal purities of ~96%, (ii) revolving speed of 0.2-0.6 THz, (iii) beam waist of 0.15-0.5 mm, and (iv) revolving radius of 0.75-1.5 mm.



rate research

Read More

Today, it is well known that light possesses a linear momentum which is along the propagation direction. Besides, scientists also discovered that light can possess an angular momentum (AM), a spin angular momentum (SAM) associated with circular polarization and an orbital angular momentum (OAM) owing to the azimuthally dependent phase. Even though such angular momenta are longitudinal in general, a SAM transverse to the propagation has opened up a variety of key applications [1]. In contrast, investigations of the transverse OAM are quite rare due to its complex nature. Here we demonstrate a simple method to generate a three dimensional (3D) optical wave packet with a controllable purely transverse OAM. Such a wave packet is a spatiotemporal (ST) vortex, which resembles an advancing cyclone, with optical energy flowing in the spatial and temporal dimension. Contrary to the transverse SAM, the magnitude of the transverse OAM carried by the photonic cyclone is scalable to a larger value by simple adjustments. Since the ST vortex carries a controllable OAM in the unique transverse dimension, it has a strong potential for novel applications that may not be possible otherwise. The scheme reported here can be readily adapted for the other spectra regime and different wave fields, opening tremendous opportunities for the study and applications of ST vortex in much broader scopes.
Recently, spatiotemporal optical vortex pulses carrying a purely transverse intrinsic orbital angular momentum were generated experimentally [{it Optica} {bf 6}, 1547 (2019); {it Nat. Photon.} {bf 14}, 350 (2020)]. However, an accurate theoretical analysis of such states and their angular-momentum properties remains elusive. Here we provide such analysis, including scalar and vector spatiotemporal Bessel-type solutions as well as descrption of their propagational, polarization, and angular-momentum properties. Most importantly, we calculate both local densities and integral values of the spin and orbital angular momenta, and predict observable spin-orbit interaction phenomena related to the coupling between the trasnverse spin and orbital angular momentum. Our analysis is readily extended to spatiotemporal vortex pulses of other natures (e.g., acoustic).
Vortices are whirling disturbances commonly found in nature ranging from tremendously small scales in Bose-Einstein condensates to cosmologically colossal scales in spiral galaxies. An optical vortex, generally associated with a spiral phase, can carry orbital angular momentum (OAM). The optical OAM can either be in the longitudinal direction if the spiral phase twists in the spatial domain or in the transverse direction if the phase rotates in the spatiotemporal domain. In this article, we demonstrate the intersection of spatiotemporal vortices and spatial vortices in a wave packet. As a result of this intersection, the wave packet hosts a tilted OAM that provides an additional degree of freedom to the applications that harness the OAM of photons.
134 - Wei Chen , Wang Zhang , Yuan Liu 2021
Recently, photons have been observed to possess transverse orbital angular momentum (OAM); however, it is unclear as whether they can hold a transverse OAM higher than 1. Here, we theoretically and experimentally demonstrate that high-order spatiotemporal Bessel optical vortices (STBOVs) can stably carry transverse OAM even beyond $10^2$. Through the inverse design of the spiral phase, an STBOV of any order can be controllably generated using a 4f pulse shaper. In contrast to conventional longitudinal OAM, the vector direction of the transverse OAM can be distinguished by the unique time-symmetrical evolution of STBOVs. More interestingly, the stability of STBOVs improves with their increasing orders owing to enhanced space-time coupling, making these beams particularly suitable for the generation of ultra-high transverse OAM. Our work paves the way for further research and application of this unique OAM of photons.
Optical-frequency combs enable measurement precision at the 20th digit, and accuracy entirely commensurate with their reference oscillator. A new direction in experiments is the creation of ultracompact frequency combs by way of nonlinear parametric optics in microresonators. We refer to these as microcombs, and here we report a silicon-chip-based microcomb optical clock that phase-coherently converts an optical-frequency reference to a microwave signal. A low-noise comb spectrum with 25 THz span is generated with a 2 mm diameter silica disk and broadening in nonlinear fiber. This spectrum is stabilized to rubidium frequency references separated by 3.5 THz by controlling two teeth 108 modes apart. The optical clocks output is the electronically countable 33 GHz microcomb line spacing, which features an absolute stability better than the rubidium transitions by the expected factor of 108. Our work demonstrates the comprehensive set of tools needed for interfacing microcombs to state-of-the-art optical clocks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا