Do you want to publish a course? Click here

The Most Powerful Lenses in the Universe: Quasar Microlensing as a Probe of the Lensing Galaxy

57   0   0.0 ( 0 )
 Added by David Pooley
 Publication date 2019
  fields Physics
and research's language is English
 Authors David Pooley




Ask ChatGPT about the research

Optical and X-ray observations of strongly gravitationally lensed quasars (especially when four separate images of the quasar are produced) determine not only the amount of matter in the lensing galaxy but also how much is in a smooth component and how much is composed of compact masses (e.g., stars, stellar remnants, primordial black holes, CDM sub-halos, and planets). Future optical surveys will discover hundreds to thousands of quadruply lensed quasars, and sensitive X-ray observations will unambiguously determine the ratio of smooth to clumpy matter at specific locations in the lensing galaxies and calibrate the stellar mass fundamental plane, providing a determination of the stellar $M/L$. A modest observing program with a sensitive, sub-arcsecond X-ray imager, combined with the planned optical observations, can make those determinations for a large number (hundreds) of the lensing galaxies, which will span a redshift range of $sim$$0.25<z<1.5$



rate research

Read More

Diffraction is important when nearby substellar objects gravitationally lens distant stars. If the wavelength of the observation is comparable to the Schwarzschild radius of lensing object, diffraction leaves an observable imprint on the lensing signature. The SKA may have sufficient sensitivity to detect the typical sources, giant stars in the bulge. The diffractive signatures in a lensing event break the degeneracies between the mass of the lens, its distance and proper motion.
96 - Sandra Savaglio 2015
A gamma-ray burst (GRB) is a strong and fast gamma-ray emission from the explosion of stellar systems (massive stars or coalescing binary compact stellar remnants), happening at any possible redshift, and detected by space missions. Although GRBs are the most energetic events after the Big Bang, systematic search (started after the first localization in 1997) led to only 374 spectroscopic redshift measurements. For less than half, the host galaxy is detected and studied in some detail. Despite the small number of known hosts, their impact on our understanding of galaxy formation and evolution is immense. These galaxies offer the opportunity to explore regions which are observationally hostile, due to the presence of gas and dust, or the large distances reached. The typical long-duration GRB host galaxy at low redshift is small, star-forming and metal poor, whereas, at intermediate redshift, many hosts are massive, dusty and chemically evolved. Going even farther in the past of the Universe, at z > 5, long-GRB hosts have never been identified, even with the deepest NIR space observations, meaning that these galaxies are very small (stellar mass < 10^7 M_sun). We considered the possibility that some high-z GRBs occurred in primordial globular clusters, systems that evolved drastically since the beginning, but would have back then the characteristics necessary to host a GRB. At that time, the fraction of stellar mass contained in proto globular clusters might have been orders of magnitude higher than today. Plus, these objects contained in the past many massive fast rotating binary systems, which are also regarded as a favorable situation for GRBs. The common factor for all long GRBs at any redshift is the stellar progenitor: it is a very massive rare/short-lived star, present in young regions, whose redshift evolution is closely related to the star-formation history of the Universe.
We present deep (265 ks) Chandra X-ray observations of PSO J352.4034$-$15.3373, a quasar at z=5.831 that, with a radio-to-optical flux ratio of R>1000, is one of the radio-loudest quasars in the early universe and is the only quasar with observed extended radio jets of kpc-scale at $z gtrsim 6$. Modeling the X-ray spectrum of the quasar with a power law, we find a best fit of $Gamma = 1.99^{+0.29}_{-0.28}$, leading to an X-ray luminosity of $L_{2-10} = 1.26^{+0.45}_{-0.33} times 10^{45} {rm erg} {rm s}^{-1}$ and an X-ray to UV brightness ratio of $alpha_{rm OX} = -1.36 pm 0.11$. We identify a diffuse structure 50 kpc (${sim}8^{primeprime}$) to the NW of the quasar along the jet axis that corresponds to a $3sigma$ enhancement in the angular density of emission and can be ruled out as a background fluctuation with a probability of P=0.9985. While with few detected photons the spectral fit of the structure is uncertain, we find that it has a luminosity of $L_{2-10}sim10^{44} {rm erg} {rm s}^{-1}$. These observations therefore potentially represent the most distant quasar jet yet seen in X-rays. We find no evidence for excess X-ray emission where the previously-reported radio jets are seen (which have an overall linear extent of $0.^{primeprime}28$), and a bright X-ray point source located along the jet axis to the SE is revealed by optical and NIR imaging to not be associated with the quasar.
Microlensings events are predicted for the light coming from cosmological sources. In addition to the microlensing due to gravitation lensing, microlensing produced also by refraction of light due to either ionized, or not, gas clouds can be considered. A detailed prediction is here given assuming that the ray of light coming from the distant source traverses a gas cloud with a Kings density profile for various possible environments. We conclude that the additional deviation due to relativistic refraction is in most cases negligible compared to the gravitational deviation. Deviation due to refraction can anyway become an interesting analysis tool for future facility with great resolving power and the effects can be singled out with dedicated surveys.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا