We study the existence and location of the resonances of a $2times 2$ semiclassical system of coupled Schrodinger operators, in the case where the two electronic levels cross at some point, and one of them is bonding, while the other one is anti-bonding. Considering energy levels just above that of the crossing, we find the asymptotics of both the real parts and the imaginary parts of the resonances close to such energies. This is a continuation of our previous works where we considered energy levels around that of the crossing.