Do you want to publish a course? Click here

Three years of Sun-as-a-star radial-velocity observations on the approach to solar minimum

70   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The time-variable velocity fields of solar-type stars limit the precision of radial-velocity determinations of their planets masses, obstructing detection of Earth twins. Since 2015 July we have been monitoring disc-integrated sunlight in daytime using a purpose-built solar telescope and fibre feed to the HARPS-N stellar radial-velocity spectrometer. We present and analyse the solar radial-velocity measurements and cross-correlation function (CCF) parameters obtained in the first 3 years of observation, interpreting them in the context of spatially-resolved solar observations. We describe a Bayesian mixture-model approach to automated data-quality monitoring. We provide dynamical and daily differential-extinction corrections to place the radial velocities in the heliocentric reference frame, and the CCF shape parameters in the sidereal frame. We achieve a photon-noise limited radial-velocity precision better than 0.43 m s$^{-1}$ per 5-minute observation. The day-to-day precision is limited by zero-point calibration uncertainty with an RMS scatter of about 0.4 m s$^{-1}$. We find significant signals from granulation and solar activity. Within a day, granulation noise dominates, with an amplitude of about 0.4 m s$^{-1}$ and an autocorrelation half-life of 15 minutes. On longer timescales, activity dominates. Sunspot groups broaden the CCF as they cross the solar disc. Facular regions temporarily reduce the intrinsic asymmetry of the CCF. The radial-velocity increase that accompanies an active-region passage has a typical amplitude of 5 m s$^{-1}$ and is correlated with the line asymmetry, but leads it by 3 days. Spectral line-shape variability thus shows promise as a proxy for recovering the true radial velocity.



rate research

Read More

The solar telescope connected to HARPS-N has been observing the Sun since the summer of 2015. Such high-cadence, long-baseline data set is crucial for understanding spurious radial-velocity signals induced by our Sun and by the instrument. On the instrumental side, this data set allowed us to detect sub-ms,systematics that needed to be corrected for. The goal of this manuscript is to i) present a new data reduction software for HARPS-N, ii) demonstrate the improvement brought by this new software on the first three years of the HARPS-N solar data set, and iii) release all the obtained solar products, from extracted spectra to precise radial velocities. To correct for the instrumental systematics observed in the data reduced with the current version of the HARPS-N data reduction software (DRS version 3.7), we adapted the newly available ESPRESSO DRS (version 2.2.3) to HARPS-N and developed new optimized recipes for the spectrograph. We then compared the first three years of HARPS-N solar data reduced with the current and new DRS. The most significant improvement brought by the new DRS is a strong decrease in the day-to-day radial-velocity scatter, from 1.27 to 1.07ms; this is thanks to a more robust method to derive wavelength solutions, but also to the use of calibrations closer in time. The newly derived solar radial-velocities are also better correlated with the chromospheric activity level of the Sun on the long-term, with a Pearson correlation coefficient of 0.93 compared to 0.77 before, which is expected from our understanding of stellar signals. Finally, we also discuss how HARPS-N spectral ghosts contaminate the measurement of the calcium activity index, and present an efficient technique to derive an index free of instrumental systematics. This paper presents a new data reduction software for HARPS-N, and demonstrates its improvements [...]
The radial velocity of the Sun as a star is affected by its surface convection and magnetic activity. The moments of the cross-correlation function between the solar spectrum and a binary line mask contain information about the stellar radial velocity and line-profile distortions caused by stellar activity. As additional indicators, we consider the disc-averaged magnetic flux and the filling factor of the magnetic regions. Here we show that the activity-induced radial-velocity fluctuations are reduced when we apply a kernel regression to these activity indicators. The disc-averaged magnetic flux proves to be the best activity proxy over a timescale of one month and gives a standard deviation of the regression residuals of 1.04 m/s, more than a factor of 2.8 smaller than the standard deviation of the original radial velocity fluctuations. This result has been achieved thanks to the high-cadence and time continuity of the observations that simultaneously sample both the radial velocity and the activity proxies.
Minor bodies of the solar system can be used to measure the spectrum of the Sun as a star by observing sunlight reflected by their surfaces. To perform an accurate measurement of the radial velocity of the Sun as a star by this method, it is necessary to take into account the Doppler shifts introduced by the motion of the reflecting body. Here we discuss the effect of its rotation. It gives a vanishing contribution only when the inclinations of the body rotation axis to the directions of the Sun and of the Earth observer are the same. When this is not the case, the perturbation of the radial velocity does not vanish and can reach up to about 2.4 m/s for an asteroid such as 2 Pallas that has an inclination of the spin axis to the plane of the ecliptic of about 30 degrees. We introduce a geometric model to compute the perturbation in the case of a uniformly reflecting body of spherical or triaxial ellipsoidal shape and provide general results to easily estimate the magnitude of the effect.
Using solar spectral irradiance measurements from the SORCE spacecraft and the F/F technique, we have estimated the radial velocity (RV) scatter induced on the Sun by stellar activity as a function of wavelength. Our goal was to evaluate the potential advantages of using new near-infrared (NIR) spectrographs to search for low-mass planets around bright F, G, and K stars by beating down activity effects. Unlike M dwarfs, which have higher fluxes and therefore greater RV information content in the NIR, solar-type stars are brightest at visible wavelengths, and, based solely on information content, are better suited to traditional optical RV surveys. However, we find that the F/F estimated RV noise induced by stellar activity is diminished by up to a factor of 4 in the NIR versus the visible. Observations with the upcoming future generation of NIR instruments can be a valuable addition to the search for low-mass planets around bright FGK stars in reducing the amount of stellar noise affecting RV measurements.
Stellar variability due to magnetic activity and flows at different spatial scales strongly impacts radial velocities. This variability is seen as oscillations, granulation, supergranulation, and meridional flows. The effect of this latter process is poorly known but could affect exoplanet detectability. We aim to quantify its amplitude when integrated over the disc and its temporal variability, first for the Sun, seen with different inclinations, and then for other solar-type stars. We used long time series of solar latitudinal meridional circulation to reconstruct its integrated contribution. We then used scaling laws from HD simulations relating the amplitude of the meridional flow variability with stellar mass and rotation rate to estimate the typical amplitude expected for other solar-type stars. We find typical rms of the order of 0.5-0.7 m/s (edge-on) and 1.2-1.7 m/s (pole-on) for the Sun, with a minimal jitter for an inclination of 45-55 deg. This is significant compared to other stellar activity contributions and is much larger than the radial-velocity signal of the Earth. The variability is strongly related to the activity cycle. Extension to other solar-type stars shows that the variability due to meridional flows is dominated by the amplitude of the cycle of those stars. The meridional flow contribution sometimes represents a high fraction of the convective blueshift inhibition signal, especially for quiet, low-mass stars. Our study shows that these meridional flows could be critical for exoplanet detection. Low inclinations are more impacted than edge-on configurations, but these latter still exhibit significant variability. Meridional flows also degrade the correlation between radial velocities due to convective blueshift inhibition and chromospheric activity indicators. This will make the correction from this signal challenging for stars with no multi-cellular patterns.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا