Do you want to publish a course? Click here

Guessing probability in quantum key distribution

143   0   0.0 ( 0 )
 Added by Xiang-Bin Wang
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

On the basis of the existing trace distance result, we present a simple and efficient method to tighten the upper bound of the guessing probability. The guessing probability of the final key k can be upper bounded by the guessing probability of another key k, if k can be mapped from the final key k. Compared with the known methods, our result is more tightened by thousands of orders of magnitude. For example, given a 10^{-9}-secure key from the sifted key, the upper bound of the guessing probability obtained using our method is 2*10^(-3277). This value is smaller than the existing result 10^(-9) by more than 3000 orders of magnitude. Our result shows that from the perspective of guessing probability, the performance of the existing trace distance security is actually much better than what was assumed in the past.

rate research

Read More

This chapter describes the application of lasers, specifically diode lasers, in the area of quantum key distribution (QKD). First, we motivate the distribution of cryptographic keys based on quantum physical properties of light, give a brief introduction to QKD assuming the reader has no or very little knowledge about cryptography, and briefly present the state-of-the-art of QKD. In the second half of the chapter we describe, as an example of a real-world QKD system, the system deployed between the University of Calgary and SAIT Polytechnic. We conclude the chapter with a brief discussion of quantum networks and future steps.
138 - Tabish Qureshi 2013
A new scheme of Quantum Key Distribution is proposed using three entangled particles in a GHZ state. Alice holds a 3-particle source and sends two particles to Bob, keeping one with herself. Bob uses one particle to generate a secure key, and the other to generate a master-key. This scheme should prove to be harder to break in non-ideal situations as compared to the standard protocols BB84 and Eckert. The scheme uses the concept of Quantum Disentanglement Eraser. Extension to multi-partite scheme has also been investigated.
Global quantum communications will enable long-distance secure data transfer, networked distributed quantum information processing, and other entanglement-enabled technologies. Satellite quantum communication overcomes optical fibre range limitations, with the first realisations of satellite quantum key distribution (SatQKD) being rapidly developed. However, limited transmission times between satellite and ground station severely constrains the amount of secret key due to finite-block size effects. Here, we analyse these effects and the implications for system design and operation, utilising published results from the Micius satellite to construct an empirically-derived channel and system model for a trusted-node downlink employing efficient BB84 weak coherent pulse decoy states with optimised parameters. We quantify practical SatQKD performance limits and examine the effects of link efficiency, background light, source quality, and overpass geometries to estimate long-term key generation capacity. Our results may guide design and analysis of future missions, and establish performance benchmarks for both sources and detectors.
This paper proposes a new protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than BB84 one. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility.
Quantum key distribution is one of the most fundamental cryptographic protocols. Quantum walks are important primitives for computing. In this paper we take advantage of the properties of quantum walks to design new secure quantum key distribution schemes. In particular, we introduce a secure quantum key-distribution protocol equipped with verification procedures against full man-in-the-middle attacks. Furthermore, we present a one-way protocol and prove its security. Finally, we propose a semi-quantum variation and prove its robustness against eavesdropping.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا