Optimal Bayesian Estimation for Random Dot Product Graphs


Abstract in English

We propose a Bayesian approach, called the posterior spectral embedding, for estimating the latent positions in random dot product graphs, and prove its optimality. Unlike the classical spectral-based adjacency/Laplacian spectral embedding, the posterior spectral embedding is a fully-likelihood based graph estimation method taking advantage of the Bernoulli likelihood information of the observed adjacency matrix. We develop a minimax-lower bound for estimating the latent positions, and show that the posterior spectral embedding achieves this lower bound since it both results in a minimax-optimal posterior contraction rate, and yields a point estimator achieving the minimax risk asymptotically. The convergence results are subsequently applied to clustering in stochastic block models, the result of which strengthens an existing result concerning the number of mis-clustered vertices. We also study a spectral-based Gaussian spectral embedding as a natural Bayesian analogy of the adjacency spectral embedding, but the resulting posterior contraction rate is sub-optimal with an extra logarithmic factor. The practical performance of the proposed methodology is illustrated through extensive synthetic examples and the analysis of a Wikipedia graph data.

Download