We present estimates of stellar population (SP) gradients from stacked spectra of slow (SR) and fast (FR) rotator elliptical galaxies from the MaNGA-DR15 survey. We find that: 1) FRs are $sim 5$ Gyrs younger, more metal rich, less $alpha$-enhanced and smaller than SRs of the same luminosity $L_r$ and central velocity dispersion $sigma_0$. This explains why when one combines SRs and FRs, objects which are small for their $L_r$ and $sigma_0$ tend to be younger. Their SP gradients are also different. 2) Ignoring the FR/SR dichotomy leads one to conclude that compact galaxies are older than their larger counterparts of the same mass, even though almost the opposite is true for FRs and SRs individually. 3) SRs with $sigma_0le 250$ km s$^{-1}$ are remarkably homogeneous within $sim R_e$: they are old, $alpha$-enhanced and only slightly super-solar in metallicity. These SRs show no gradients in age and $M_*/L_r$, negative gradients in metallicity, and slightly positive gradients in [$alpha$/Fe] (the latter are model dependent). SRs with $sigma_0ge 250$ km $s^{-1}$ are slightly younger and more metal rich, contradicting previous work suggesting that age increases with $sigma_0$. They also show larger $M_*/L_r$ gradients. 4) Self-consistently accounting for $M_*/L$ gradients yields $M_{rm dyn}approx M_*$ because gradients reduce $M_{rm dyn}$ by $sim 0.2$ dex while only slightly increasing the $M_*$ inferred using a Kroupa (not Salpeter) IMF. 5) The FR population all but disappears above $M_*ge 3times 10^{11}M_odot$; this is the same scale at which the size-mass correlation and other scaling relations change. Our results support the finding that this is an important mass scale which correlates with the environment and above which mergers matter.