Do you want to publish a course? Click here

Cancellation of vacuum diagrams and long-time limit in out-of-equilibrium diagrammatic Quantum Monte Carlo

185   0   0.0 ( 0 )
 Added by Alice Moutenet
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We express the recently introduced real-time diagrammatic Quantum Monte Carlo, Phys. Rev. B 91, 245154 (2015), in the Larkin-Ovchinnikov basis in Keldysh space. Based on a perturbation expansion in the local interaction $U$, the special form of the interaction vertex allows to write diagrammatic rules in which vacuum Feynman diagrams directly vanish. This reproduces the main property of the previous algorithm, without the cost of the exponential sum over Keldysh indices. In an importance sampling procedure, this implies that only interaction times in the vicinity of the measurement time contribute. Such an algorithm can then directly address the long-time limit needed in the study of steady states in out-of-equilibrium systems. We then implement and discuss different variants of Monte Carlo algorithms in the Larkin-Ovchinnikov basis. A sign problem reappears, showing that the cancellation of vacuum diagrams has no direct impact on it.



rate research

Read More

151 - Riccardo Rossi 2016
We present a simple trick that allows to consider the sum of all connected Feynman diagrams at fixed position of interaction vertices for general fermionic models. With our approach one achieves superior performance compared to Diagrammatic Monte Carlo, while rendering the algorithmic part dramatically simpler. As we consider the sum of all connected diagrams at once, we allow for cancellations between diagrams with different signs, alleviating the sign problem. Moreover, the complexity of the calculation grows exponentially with the order of the expansion, which should be constrasted with the factorial growth of the standard diagrammatic technique. We illustrate the efficiency of the technique for the two-dimensional Fermi-Hubbard model.
We extend the recently developed Quantum Quasi-Monte Carlo (QQMC) approach to obtain the full frequency dependence of Green functions in a single calculation. QQMC is a general approach for calculating high-order perturbative expansions in power of the electron-electron interaction strength. In contrast to conventional Markov chain Monte Carlo sampling, QQMC uses low-discrepancy sequences for a more uniform sampling of the multi-dimensional integrals involved and can potentially outperform Monte Carlo by several orders of magnitudes. A core concept of QQMC is the a priori construction of a model function that approximates the integrand and is used to optimize the sampling distribution. In this paper, we show that the model function concept extends to a kernel approach for the computation of Green functions. We illustrate the approach on the Anderson impurity model and show that the scaling of the error with the number of integrand evaluations $N$ is $sim 1/N^{0.86}$ in the best cases, and comparable to Monte Carlo scaling $sim 1/N^{0.5}$ in the worst cases. We find a systematic improvement over Monte Carlo sampling by at least two orders of magnitude while using a basic form of model function. Finally, we compare QQMC results with calculations performed with the Fork Tensor Product State (FTPS) method, a recently developed tensor network approach for solving impurity problems. Applying a simple Pade approximant for the series resummation, we find that QQMC matches the FTPS results beyond the perturbative regime.
We propose a novel approach to nonequilibrium real-time dynamics of quantum impurities models coupled to biased non-interacting leads, such as those relevant to quantum transport in nanoscale molecular devices. The method is based on a Diagrammatic Monte Carlo sampling of the real-time perturbation theory along the Keldysh contour. We benchmark the method on a non-interacting resonant level model and, as a first non-trivial application, we study zero temperature non-equilibrium transport through a vibrating molecule.
We present the first approximation free diagrammatic Monte Carlo study of a lattice polaron interacting with an acoustic phonon branch through the deformation potential. Weak and strong coupling regimes are separated by a self-trapping region where quantum resonance between various possible lattice deformations is seen in the ground state properties, spectral function, and optical conductivity. The unique feature of such polaron is the interplay between long- and short wavelength acoustic vibrations creating a composite phonon cloud and leading to persistent self-trapping due to the existence of multiple quasi-stable states. This results in a spectral response whose structure is much more complex than in any of the previously considered polaron models.
Diagrammatic expansions are a central tool for treating correlated electron systems. At thermal equilibrium, they are most naturally defined within the Matsubara formalism. However, extracting any dynamic response function from a Matsubara calculation ultimately requires the ill-defined analytical continuation from the imaginary- to the real-frequency domain. It was recently proposed [Phys. Rev. B 99, 035120 (2019)] that the internal Matsubara summations of any interaction-expansion diagram can be performed analytically by using symbolic algebra algorithms. The result of the summations is then an analytical function of the complex frequency rather than Matsubara frequency. Here we apply this principle and develop a diagrammatic Monte Carlo technique which yields results directly on the real-frequency axis. We present results for the self-energy $Sigma(omega)$ of the doped 32x32 cyclic square-lattice Hubbard model in a non-trivial parameter regime, where signatures of the pseudogap appear close to the antinode. We discuss the behavior of the perturbation series on the real-frequency axis and in particular show that one must be very careful when using the maximum entropy method on truncated perturbation series. Our approach holds great promise for future application in cases when analytical continuation is difficult and moderate-order perturbation theory may be sufficient to converge the result.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا