Homogenous reduced moment in a gapful scalar chiral kagome antiferromagnet


Abstract in English

We present present a quantitative experimental investigation of the scalar chiral magnetic order with in $rm{Nd_3Sb_3Mg_2O_{14}}$. Static magnetization reveals a net ferromagnetic ground state, and inelastic neutron scattering from the hyperfine coupled nuclear spin reveals a local ordered moment of 1.76(6) $mu_B$, just 61(2)% of the saturated moment size. The experiments exclude static disorder as the source of the reduced moment. A 38(1) $mu$eV gap in the magnetic excitation spectrum inferred from heat capacity rules out thermal fluctuations and suggests a multipolar explanation for the moment reduction. We compare $rm{Nd_3Sb_3Mg_2O_{14}}$ to Nd pyrochlores and show that it is close to a moment fragmented state.

Download