Do you want to publish a course? Click here

Bulk quantities in nuclear collisions from running coupling $k_{T}$-factorization and hybrid simulations

61   0   0.0 ( 0 )
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Starting from a Color Glass Condensate (CGC) framework, based on a running-coupling improved $k_T$-factorized formula, we calculate bulk observables in several heavy-ion collision systems. This is done in two ways: first we calculate the particle distribution directly implied from the CGC model, and we compare this to the case where it is instead used as initial conditions for a hybrid hydrodynamic simulation. In this way, we can assess the effects of hydrodynamic and hadronic evolution by quantifying how much they change the results from a pure initial state approach and, therefore, to what extent initial condition models can be directly compared to experimental data. We find that entropy production in subsequent hydrodynamic evolution can increase multiplicity by as much as 50%. However, disregarding a single overall normalization factor, the centrality, energy, and system size dependence of charged hadron multiplicity is only affected at the $sim$5% level. Because of this, the parameter-free prediction for these dependencies gives reasonable agreement with experimental data whether or not hydrodynamic evolution is included. On the other hand, our model results are not compatible with the hypothesis that hydrodynamic evolution is present in large systems, but not small systems like p-Pb, in which case the dependence of multiplicity on system size would be stronger than seen experimentally. Moreover, we find that hydrodynamic evolution significantly changes the distribution of momentum, so that observables such as mean transverse momentum are very different from the initial particle production, and much closer to measured data. Finally, we find that a good agreement to anisotropic flow data cannot be achieved due to the large eccentricity generated by this model.



rate research

Read More

The inclusive gluon production at midrapidities is described in the Color Glass Condensate formalism using the $k_T$ - factorization formula, which was derived at fixed coupling constant considering the scattering of a dilute system of partons with a dense one. Recent analysis demonstrated that this approach provides a satisfactory description of the experimental data for the inclusive hadron production in $pp/pA/AA$ collisions. However, these studies are based on the fixed coupling $k_T$ - factorization formula, which does not take into account the running coupling corrections, which are important to set the scales present in the cross section. In this paper we consider the running coupling corrected $k_T$ - factorization formula conjectured some years ago and investigate the impact of the running coupling corrections on the observables. In particular, the pseudorapidity distributions and charged hadrons multiplicity are calculated considering $pp$, $dAu/pPb$ and $AuAu/PbPb$ collisions at RHIC and LHC energies. We compare the corrected running coupling predictions with those obtained using the original $k_T$ - factorization assuming a fixed coupling or a prescription for the inclusion of the running of the coupling. Considering the Kharzeev - Levin - Nardi unintegrated gluon distribution and a simplified model for the nuclear geometry, we demonstrate that the distinct predictions are similar for the pseudorapidity distributions in $pp/pA/AA$ collisions and for the charged hadrons multiplicity in $pp/pA$ collisions. On the other hand, the running coupling corrected $k_T$ - factorization formula predicts a smoother energy dependence for $dN/deta$ in $AA$ collisions.
We extend the numerical analysis of the energy and centrality dependence of particle multiplicities at midrapidity in high-energy p+A and A+A collisions from a running coupling $k_T$-factorization formula made in~cite{Dumitru:2018gjm} by considering two unintegrated gluon distributions that were left out. While a good agreement with the experimental data in A+A collisions is achieved, improving the description of those observables in p+A collisions calls for a better understanding of the proton unintegrated gluon distribution at larger values of $x$ and also the use of a realistic impact parameter dependence.
In heavy ion collisions, elliptic flow $v_2$ and radial flow, characterized by event-wise average transverse momentum $[p_{mathrm{T}}]$, are related to the shape and size of the overlap region, which are sensitive to the shape of colliding atomic nuclei. The Pearson correlation coefficient between $v_2$ and $[p_{mathrm{T}}]$, $rho_2$, was found to be particularly sensitive to the quadrupole deformation parameter $beta$ that is traditionally measured in low energy experiments. Built on earlier insight that the prolate deformation $beta>0$ reduces the $rho_2$ in ultra-central collisions (UCC), we show that the prolate deformation $beta<0$ enhances the value of $rho_2$. As $beta>0$ and $beta<0$ are the two extremes of triaxiality, the strength and sign of $v_2^2-[p_{mathrm{T}}]$ correlation can be used to provide valuable information on the triaxiality of the nucleus. Our study provide further arguments for using the hydrodynamic flow as a precision tool to directly image the deformation of the atomic nuclei at extremely short time scale ($<10^{-24}$s).
Kaon production in pion-nucleon collisions in nuclear matter is studied in the resonance model. To evaluate the in-medium modification of the reaction amplitude as a function of the baryonic density we introduce relativistic, mean-field potentials for the initial, final and intermediate mesonic and baryonic states. These vector and scalar potentials were calculated using the quark-meson coupling (QMC) model. The in-medium kaon production cross sections in pion-nucleon interactions for reaction channels with $Lambda$ and $Sigma$ hyperons in the final state were calculated at the baryonic densities appropriate to relativistic heavy ion collisions. Contrary to earlier work which has not allowed for the change of the cross section in medium, we find that the data for kaon production are consistent with a repulsive $K^+$-nucleus potential.
179 - Jorgen Randrup 2010
The spinodal amplification of density fluctuations is treated perturbatively within dissipative fluid dynamics for the purpose of elucidating the prospects for this mechanism to cause a phase separation to occur during a relativistic nuclear collision. The present study includes not only viscosity but also heat conduction (whose effect on the growth rates is of comparable magnitude but opposite), as well as a gradient term in the local pressure, and the corresponding dispersion relation for collective modes in bulk matter is derived from relativistic fluid dynamics. A suitable two-phase equation of state is obtained by interpolation between a hadronic gas and a quark-gluon plasma, while the transport coefficients are approximated by simple parametrizations that are suitable at any degree of net baryon density. We calculate the degree of spinodal amplification occurring along specific dynamical phase trajectories characteristic of nuclear collision at various energies. The results bring out the important fact that the prospects for spinodal phase separation to occur can be greatly enhanced by careful tuning of the collision energy to ensure that the thermodynamic conditions associated with the maximum compression lie inside the region of spinodal instability.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا