Do you want to publish a course? Click here

Krylov--Bogolyubov averaging

108   0   0.0 ( 0 )
 Added by Sergei Kuksin
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the modified approach to the classical Bogolyubov-Krylov averaging, developed recently for the purpose of PDEs. It allows to treat Lipschitz perturbations of linear systems with pure imaginary spectrum and may be generalized to treat PDEs with small nonlinearities.



rate research

Read More

176 - Mengyu Cheng , Zhenxin Liu 2021
In this paper, we establish the second Bogolyubov theorem and global averaging principle for stochastic partial differential equations (in short, SPDEs) with monotone coefficients. Firstly, we prove that there exists a unique $L^{2}$-bounded solution to SPDEs with monotone coefficients and this bounded solution is globally asymptotically stable in square-mean sense. Then we show that the $L^{2}$-bounded solution possesses the same recurrent properties (e.g. periodic, quasi-periodic, almost periodic, almost automorphic, Birkhoff recurrent, Levitan almost periodic, etc.) in distribution sense as the coefficients. Thirdly, we prove that the recurrent solution of the original equation converges to the stationary solution of averaged equation under the compact-open topology as the time scale goes to zero--in other words, there exists a unique recurrent solution to the original equation in a neighborhood of the stationary solution of averaged equation when the time scale is small. Finally, we establish the global averaging principle in weak sense, i.e. we show that the attractor of original system tends to that of the averaged equation in probability measure space as the time scale goes to zero. For illustration of our results, we give two applications, including stochastic reaction diffusion equations and stochastic generalized porous media equations.
In this article, we present a new approach to averaging in non-Hamiltonian systems with periodic forcing. The results here do not depend on the existence of a small parameter. In fact, we show that our averaging method fits into an appropriate nonlinear equivalence problem, and that this problem can be solved formally by using the Lie transform framework to linearize it. According to this approach, we derive formal coordinate transformations associated with both first-order and higher-order averaging, which result in more manageable formulae than the classical ones. Using these transformations, it is possible to correct the solution of an averaged system by recovering the oscillatory components of the original non-averaged system. In this framework, the inverse transformations are also defined explicitly by formal series; they allow the estimation of appropriate initial data for each higher-order averaged system, respecting the equivalence relation. Finally, we show how these methods can be used for identifying and computing periodic solutions for a very large class of nonlinear systems with time-periodic forcing. We test the validity of our approach by analyzing both the first-order and the second-order averaged system for a problem in atmospheric chemistry.
171 - Yan Lv , A. J. Roberts 2011
An averaging method is applied to derive effective approximation to the following singularly perturbed nonlinear stochastic damped wave equation u u_{tt}+u_t=D u+f(u)+ u^alphadot{W} on an open bounded domain $DsubsetR^n$,, $1leq nleq 3$,. Here $ u>0$ is a small parameter characterising the singular perturbation, and $ u^alpha$,, $0leq alphaleq 1/2$,, parametrises the strength of the noise. Some scaling transformations and the martingale representation theorem yield the following effective approximation for small $ u$, u_t=D u+f(u)+ u^alphadot{W} to an error of $ord{ u^alpha}$,.
Nonstandard ergodic averages can be defined for a measure-preserving action of a group on a probability space, as a natural extension of classical (nonstandard) ergodic averages. We extend the one-dimensional theory, obtaining L^1 pointwise ergodic theorems for several kinds of nonstandard sparse group averages, with a special focus on the group Z^d. Namely, we extend results for sparse block averages and sparse random averages to their analogues on virtually nilpotent groups, and extend Christs result for sparse deterministic sequences to its analogue on Z^d. The second and third results have two nontrivial variants on Z^d: a native d-dimensional average and a product average from the 1-dimensional averages.
228 - Michael Baake 2010
We examine the diffraction properties of lattice dynamical systems of algebraic origin. It is well-known that diverse dynamical properties occur within this class. These include different orders of mixing (or higher-order correlations), the presence or absence of measure rigidity (restrictions on the set of possible shift-invariant ergodic measures to being those of algebraic origin), and different entropy ranks (which may be viewed as the maximal spatial dimension in which the system resembles an i.i.d. process). Despite these differences, it is shown that the resulting diffraction spectra are essentially indistinguishable, thus raising further difficulties for the inverse problem of structure determination from diffraction spectra. Some of them may be resolved on the level of higher-order correlation functions, which we also briefly compare.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا