Do you want to publish a course? Click here

Variational and Parquet-diagram theory for strongly correlated normal and superfluid systems

52   0   0.0 ( 0 )
 Added by Eckhard Krotscheck
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop the variational and correlated basis functions/parquet-diagram theory of strongly interacting normal and superfluid systems. The first part of this contribution is devoted to highlight the connections between the Euler equations for the Jastrow-Feenberg wave function on the one hand side, and the ring, ladder, and self-energy diagrams of parquet-diagram theory on the other side. We will show that these subsets of Feynman diagrams are contained, in a local approximation, in the variational wave function. In the second part of this work, we derive the fully optimized Fermi-Hypernetted Chain (FHNC-EL) equations for a superfluid system. Close examination of the procedure reveals that the naive application of these equations exhibits spurious unphysical properties for even an infinitesimal superfluid gap. We will conclude that it is essential to go {em beyond/} the usual Jastrow-Feenberg approximation and to include the exact particle-hole propagator to guarantee a physically meaningful theory and the correct stability range. We will then implement this method and apply it to neutron matter and low density Fermi liquids interacting via the Lennard-Jones model interaction and the Poschl-Teller interaction. While the quantitative changes in the magnitude of the superfluid gap are relatively small, we see a significant difference between applications for neutron matter and the Lennard-Jones and Poschl-Teller systems. Despite the fact that the gap in neutron matter can be as large as half the Fermi energy, the corrections to the gap are relatively small. In the Lennard-Jones and Poschl-Teller models, the most visible consequence of the self-consistent calculation is the change in stability range of the system.



rate research

Read More

The dc Josephson effect provides a powerful phase-sensitive tool for investigating superfluid order parameters. We report on the observation of dc Josephson supercurrents in strongly interacting fermionic superfluids across a tunnelling barrier in the absence of any applied potential difference. For sufficiently strong barriers, we observe a sinusoidal current-phase relation, in agreement with Josephsons seminal prediction. We map out the zero-resistance state and its breakdown as a function of junction parameters, extracting the Josephson critical current behaviour. By comparing our results with an analytic model, we determine the pair condensate fraction throughout the Bardeen-Cooper-Schrieffer - Bose-Einstein Condensation crossover. Our work suggests that coherent Josephson transport may be used to pin down superfluid order parameters in diverse atomic systems, even in the presence of strong correlations.
Among the various numerical techniques to study the physics of strongly correlated quantum many-body systems, the self-energy functional approach (SFA) has become increasingly important. In its previous form, however, SFA is not applicable to Bose-Einstein condensation or superfluidity. In this paper we show how to overcome this shortcoming. To this end we identify an appropriate quantity, which we term $D$, that represents the correlation correction of the condensate order parameter, as it does the self-energy for the Greens function. An appropriate functional is derived, which is stationary at the exact physical realizations of $D$ and of the self-energy. Its derivation is based on a functional-integral representation of the grand potential followed by an appropriate sequence of Legendre transformations. The approach is not perturbative and therefore applicable to a wide range of models with local interactions. We show that the variational cluster approach based on the extended self-energy functional is equivalent to the pseudoparticle approach introduced in Phys. Rev. B, 83, 134507 (2011). We present results for the superfluid density in the two-dimensional Bose-Hubbard model, which show a remarkable agreement with those of Quantum-Monte-Carlo calculations.
48 - E.Krotscheck , J. Wang 2019
We develop the variational/parquet diagram approach to the structure of nuclear systems with strongly state-dependent interactions. For that purpose, we combine ideas of the general Jastrow-Feenberg variational method and the local parquet-diagram theory for bosons with state-dependent interactions (R. A. Smith and A. D. Jackson, Nucl. Phys. {bf 476}, 448 (1988)). The most tedious aspect of variational approaches, namely the symmetrization of an operator dependent variational wave function, is thereby avoided. We carry out calculations for neutron matter interacting via the Reid and Argonne $v_6$ models of the nucleon-nucleon interaction. While the equation of state is a rather robust quantity that comes out reasonably well even in very simplistic approaches, we show that effective interactions, which are the essential input for calculating dynamic properties, depend sensitively on the quality of the treatment of the many-body problem.
We report a theoretical analysis of variational wave functions for the BCS pairing problem. Starting with a Jastrow-Feenberg (or, in a more recent language fixed-node) wave function for the superfluid state, we develop the full optimized Fermi-Hypernetted Chain (FHNC-EL) equations which sum a local approximation of the parquet-diagrams. Close examination of the procedure reveals that it is essential to go beyond the usual Jastrow-Feenberg approximation to guarantee the correct stability range.
77 - E. Krotscheck , J. Wang 2020
We apply parquet-diagram summation methods for the calculation of the superfluid gap in $S$-wave pairing in neutron matter for realistic nucleon-nucleon interactions such as the Argonne $v_6$ and the Reid $v_6$ potentials. It is shown that diagrammatic contributions that are outside the parquet class play an important role. These are, in variational theories, identified as so-called commutator contributions. Moreover, using a particle-hole propagator appropriate for a superfluid system results in the suppression of the spin-channel contribution to the induced interaction. Applying these corrections to the pairing interaction, our results agree quite well with Quantum Monte Carlo data.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا