Do you want to publish a course? Click here

A strengthened data processing inequality for the Belavkin-Staszewski relative entropy

76   0   0.0 ( 0 )
 Added by Andreas Bluhm
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work, we provide a strengthening of the data processing inequality for the relative entropy introduced by Belavkin and Staszewski (BS-entropy). This extends previous results by Carlen and Vershynina for the relative entropy and other standard $f$-divergences. To this end, we provide two new equivalent conditions for the equality case of the data processing inequality for the BS-entropy. Subsequently, we extend our result to a larger class of maximal $f$-divergences. Here, we first focus on quantum channels which are conditional expectations onto subalgebras and use the Stinespring dilation to lift our results to arbitrary quantum channels.



rate research

Read More

Quasi-factorization-type inequalities for the relative entropy have recently proven to be fundamental in modern proofs of modified logarithmic Sobolev inequalities for quantum spin systems. In this paper, we show some results of weak quasi-factorization for the Belavkin-Staszewski relative entropy, i.e. upper bounds for the BS-entropy between two bipartite states in terms of the sum of two conditional BS-entropies, up to some multiplicative and additive factors.
173 - A. A. Kuznetsova 2010
In this paper a general definition of quantum conditional entropy for infinite-dimensional systems is given based on recent work of Holevo and Shirokov arXiv:1004.2495 devoted to quantum mutual and coherent informations in the infinite-dimensional case. The properties of the conditional entropy such as monotonicity, concavity and subadditivity are also generalized to the infinite-dimensional case.
Linearity of a dynamical entropy means that the dynamical entropy of the n-fold composition of a dynamical map with itself is equal to n times the dynamical entropy of the map for every positive integer n. We show that the quantum dynamical entropy introduced by Slomczynski and Zyczkowski is nonlinear in the time interval between successive measurements of a quantum dynamical system. This is in contrast to Kolmogorov-Sinai dynamical entropy for classical dynamical systems, which is linear in time. We also compute the exact values of quantum dynamical entropy for the Hadamard walk with varying Luders-von Neumann instruments and partitions.
We study the entropy of pure shift-invariant states on a quantum spin chain. Unlike the classical case, the local restrictions to intervals of length $N$ are typically mixed and have therefore a non-zero entropy $S_N$ which is, moreover, monotonically increasing in $N$. We are interested in the asymptotics of the total entropy. We investigate in detail a class of states derived from quasi-free states on a CAR algebra. These are characterised by a measurable subset of the unit interval. As the entropy density is known to vanishes, $S_N$ is sublinear in $N$. For states corresponding to unions of finitely many intervals, $S_N$ is shown to grow slower than $(log N)^2$. Numerical calculations suggest a $log N$ behaviour. For the case with infinitely many intervals, we present a class of states for which the entropy $S_N$ increases as $N^alpha$ where $alpha$ can take any value in $(0,1)$.
We show that twisting of an infinite straight three-dimensional tube with non-circular cross-section gives rise to a Hardy-type inequality for the associated Dirichlet Laplacian. As an application we prove certain stability of the spectrum of the Dirichlet Laplacian in locally and mildly bent tubes. Namely, it is known that any local bending, no matter how small, generates eigenvalues below the essential spectrum of the Laplacian in the tubes with arbitrary cross-sections rotated along a reference curve in an appropriate way. In the present paper we show that for any other rotation some critical strength of the bending is needed in order to induce a non-empty discrete spectrum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا