Do you want to publish a course? Click here

Fine-Grained Named Entity Recognition using ELMo and Wikidata

110   0   0.0 ( 0 )
 Added by Michael Sigamani
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Fine-grained Named Entity Recognition is a task whereby we detect and classify entity mentions to a large set of types. These types can span diverse domains such as finance, healthcare, and politics. We observe that when the type set spans several domains the accuracy of the entity detection becomes a limitation for supervised learning models. The primary reason being the lack of datasets where entity boundaries are properly annotated, whilst covering a large spectrum of entity types. Furthermore, many named entity systems suffer when considering the categorization of fine grained entity types. Our work attempts to address these issues, in part, by combining state-of-the-art deep learning models (ELMo) with an expansive knowledge base (Wikidata). Using our framework, we cross-validate our model on the 112 fine-grained entity types based on the hierarchy given from the Wiki(gold) dataset.



rate research

Read More

This paper presents a novel framework, MGNER, for Multi-Grained Named Entity Recognition where multiple entities or entity mentions in a sentence could be non-overlapping or totally nested. Different from traditional approaches regarding NER as a sequential labeling task and annotate entities consecutively, MGNER detects and recognizes entities on multiple granularities: it is able to recognize named entities without explicitly assuming non-overlapping or totally nested structures. MGNER consists of a Detector that examines all possible word segments and a Classifier that categorizes entities. In addition, contextual information and a self-attention mechanism are utilized throughout the framework to improve the NER performance. Experimental results show that MGNER outperforms current state-of-the-art baselines up to 4.4% in terms of the F1 score among nested/non-overlapping NER tasks.
Traditional information retrieval treats named entity recognition as a pre-indexing corpus annotation task, allowing entity tags to be indexed and used during search. Named entity taggers themselves are typically trained on thousands or tens of thousands of examples labeled by humans. However, there is a long tail of named entities classes, and for these cases, labeled data may be impossible to find or justify financially. We propose exploring named entity recognition as a search task, where the named entity class of interest is a query, and entities of that class are the relevant documents. What should that query look like? Can we even perform NER-style labeling with tens of labels? This study presents an exploration of CRF-based NER models with handcrafted features and of how we might transform them into search queries.
Named entity typing (NET) is a classification task of assigning an entity mention in the context with given semantic types. However, with the growing size and granularity of the entity types, rare researches in previous concern with newly emerged entity types. In this paper, we propose MZET, a novel memory augmented FNET (Fine-grained NET) model, to tackle the unseen types in a zero-shot manner. MZET incorporates character-level, word-level, and contextural-level information to learn the entity mention representation. Besides, MZET considers the semantic meaning and the hierarchical structure into the entity type representation. Finally, through the memory component which models the relationship between the entity mention and the entity type, MZET transfer the knowledge from seen entity types to the zero-shot ones. Extensive experiments on three public datasets show prominent performance obtained by MZET, which surpasses the state-of-the-art FNET neural network models with up to 7% gain in Micro-F1 and Macro-F1 score.
Neural entity linking models are very powerful, but run the risk of overfitting to the domain they are trained in. For this problem, a domain is characterized not just by genre of text but even by factors as specific as the particular distribution of entities, as neural models tend to overfit by memorizing properties of frequent entities in a dataset. We tackle the problem of building robust entity linking models that generalize effectively and do not rely on labeled entity linking data with a specific entity distribution. Rather than predicting entities directly, our approach models fine-grained entity properties, which can help disambiguate between even closely related entities. We derive a large inventory of types (tens of thousands) from Wikipedia categories, and use hyperlinked mentions in Wikipedia to distantly label data and train an entity typing model. At test time, we classify a mention with this typing model and use soft type predictions to link the mention to the most similar candidate entity. We evaluate our entity linking system on the CoNLL-YAGO dataset (Hoffart et al., 2011) and show that our approach outperforms prior domain-independent entity linking systems. We also test our approach in a harder setting derived from the WikilinksNED dataset (Eshel et al., 2017) where all the mention-entity pairs are unseen during test time. Results indicate that our approach generalizes better than a state-of-the-art neural model on the dataset.
126 - Leyang Cui , Yu Wu , Jian Liu 2021
There is a recent interest in investigating few-shot NER, where the low-resource target domain has different label sets compared with a resource-rich source domain. Existing methods use a similarity-based metric. However, they cannot make full use of knowledge transfer in NER model parameters. To address the issue, we propose a template-based method for NER, treating NER as a language model ranking problem in a sequence-to-sequence framework, where original sentences and statement templates filled by candidate named entity span are regarded as the source sequence and the target sequence, respectively. For inference, the model is required to classify each candidate span based on the corresponding template scores. Our experiments demonstrate that the proposed method achieves 92.55% F1 score on the CoNLL03 (rich-resource task), and significantly better than fine-tuning BERT 10.88%, 15.34%, and 11.73% F1 score on the MIT Movie, the MIT Restaurant, and the ATIS (low-resource task), respectively.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا