Do you want to publish a course? Click here

End-to-end Sleep Staging with Raw Single Channel EEG using Deep Residual ConvNets

94   0   0.0 ( 0 )
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Humans approximately spend a third of their life sleeping, which makes monitoring sleep an integral part of well-being. In this paper, a 34-layer deep residual ConvNet architecture for end-to-end sleep staging is proposed. The network takes raw single channel electroencephalogram (Fpz-Cz) signal as input and yields hypnogram annotations for each 30s segments as output. Experiments are carried out for two different scoring standards (5 and 6 stage classification) on the expanded PhysioNet Sleep-EDF dataset, which contains multi-source data from hospital and household polysomnography setups. The performance of the proposed network is compared with that of the state-of-the-art algorithms in patient independent validation tasks. The experimental results demonstrate the superiority of the proposed network compared to the best existing method, providing a relative improvement in epoch-wise average accuracy of 6.8% and 6.3% on the household data and multi-source data, respectively. Codes are made publicly available on Github.



rate research

Read More

Many sleep studies suffer from the problem of insufficient data to fully utilize deep neural networks as different labs use different recordings set ups, leading to the need of training automated algorithms on rather small databases, whereas large annotated databases are around but cannot be directly included into these studies for data compensation due to channel mismatch. This work presents a deep transfer learning approach to overcome the channel mismatch problem and transfer knowledge from a large dataset to a small cohort to study automatic sleep staging with single-channel input. We employ the state-of-the-art SeqSleepNet and train the network in the source domain, i.e. the large dataset. Afterwards, the pretrained network is finetuned in the target domain, i.e. the small cohort, to complete knowledge transfer. We study two transfer learning scenarios with slight and heavy channel mismatch between the source and target domains. We also investigate whether, and if so, how finetuning entirely or partially the pretrained network would affect the performance of sleep staging on the target domain. Using the Montreal Archive of Sleep Studies (MASS) database consisting of 200 subjects as the source domain and the Sleep-EDF Expanded database consisting of 20 subjects as the target domain in this study, our experimental results show significant performance improvement on sleep staging achieved with the proposed deep transfer learning approach. Furthermore, these results also reveal the essential of finetuning the feature-learning parts of the pretrained network to be able to bypass the channel mismatch problem.
84 - Xue Jiang , Jianhui Zhao , Bo Du 2021
EEG signals are usually simple to obtain but expensive to label. Although supervised learning has been widely used in the field of EEG signal analysis, its generalization performance is limited by the amount of annotated data. Self-supervised learning (SSL), as a popular learning paradigm in computer vision (CV) and natural language processing (NLP), can employ unlabeled data to make up for the data shortage of supervised learning. In this paper, we propose a self-supervised contrastive learning method of EEG signals for sleep stage classification. During the training process, we set up a pretext task for the network in order to match the right transformation pairs generated from EEG signals. In this way, the network improves the representation ability by learning the general features of EEG signals. The robustness of the network also gets improved in dealing with diverse data, that is, extracting constant features from changing data. In detail, the networks performance depends on the choice of transformations and the amount of unlabeled data used in the training process of self-supervised learning. Empirical evaluations on the Sleep-edf dataset demonstrate the competitive performance of our method on sleep staging (88.16% accuracy and 81.96% F1 score) and verify the effectiveness of SSL strategy for EEG signal analysis in limited labeled data regimes. All codes are provided publicly online.
We present an end-to-end trainable framework for P-frame compression in this paper. A joint motion vector (MV) and residual prediction network MV-Residual is designed to extract the ensembled features of motion representations and residual information by treating the two successive frames as inputs. The prior probability of the latent representations is modeled by a hyperprior autoencoder and trained jointly with the MV-Residual network. Specially, the spatially-displaced convolution is applied for video frame prediction, in which a motion kernel for each pixel is learned to generate predicted pixel by applying the kernel at a displaced location in the source image. Finally, novel rate allocation and post-processing strategies are used to produce the final compressed bits, considering the bits constraint of the challenge. The experimental results on validation set show that the proposed optimized framework can generate the highest MS-SSIM for P-frame compression competition.
233 - Chaoqin Huang , Fei Ye , Ya Zhang 2020
This paper explores semi-supervised anomaly detection, a more practical setting for anomaly detection where a small additional set of labeled samples are provided. Based on the analysis of Deep SAD, the state-of-the-art for semi-supervised anomaly detection, we propose a new KL-divergence based objective function and show that two factors: the mutual information between the data and latent representations, and the entropy of latent representations, constitute an integral objective function for anomaly detection. To resolve the contradiction in simultaneously optimizing the two factors, we propose a novel encoder-decoder-encoder structure, with the first encoder focusing on optimizing the mutual information and the second encoder focusing on optimizing the entropy. The two encoders are enforced to share similar encoding with a consistent constraint on their latent representations. Extensive experiments have revealed that the proposed method significantly outperforms several state-of-the-arts on multiple benchmark datasets, including medical diagnosis and several classic anomaly detection benchmarks.
Video-to-speech is the process of reconstructing the audio speech from a video of a spoken utterance. Previous approaches to this task have relied on a two-step process where an intermediate representation is inferred from the video, and is then decoded into waveform audio using a vocoder or a waveform reconstruction algorithm. In this work, we propose a new end-to-end video-to-speech model based on Generative Adversarial Networks (GANs) which translates spoken video to waveform end-to-end without using any intermediate representation or separate waveform synthesis algorithm. Our model consists of an encoder-decoder architecture that receives raw video as input and generates speech, which is then fed to a waveform critic and a power critic. The use of an adversarial loss based on these two critics enables the direct synthesis of raw audio waveform and ensures its realism. In addition, the use of our three comparative losses helps establish direct correspondence between the generated audio and the input video. We show that this model is able to reconstruct speech with remarkable realism for constrained datasets such as GRID, and that it is the first end-to-end model to produce intelligible speech for LRW (Lip Reading in the Wild), featuring hundreds of speakers recorded entirely `in the wild. We evaluate the generated samples in two different scenarios -- seen and unseen speakers -- using four objective metrics which measure the quality and intelligibility of artificial speech. We demonstrate that the proposed approach outperforms all previous works in most metrics on GRID and LRW.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا