High oxygen pressure floating zone growth and crystal structure of the layered nickelates R$_4$Ni$_3$O$_{10}$ (R=La, Pr)


Abstract in English

Single crystals of the metallic Ruddlesden-Popper trilayer nickelates R$_4$Ni$_3$O$_{10}$ (R=La, Pr) were successfully grown using an optical-image floating zone furnace under oxygen pressure (pO$_2$) of 20 bar for La$_4$Ni$_3$O$_{10}$ and 140 bar for Pr$_4$Ni$_3$O$_{10}$. A combination of synchrotron and laboratory x-ray single crystal diffraction, high-resolution synchrotron x-ray powder diffraction and measurements of physical properties revealed that R$_4$Ni$_3$O$_{10}$ (R=La, Pr) crystallizes in the monoclinic $P$2$_1$/$a$ (Z=2) space group at room temperature, and that a metastable orthorhombic phase ($Bmab$) can be trapped by post-growth rapid cooling. Both La$_4$Ni$_3$O$_{10}$ and Pr$_4$Ni$_3$O$_{10}$ crystals undergo a metal-to-metal transition (MMT) below room temperature. In the case of Pr$_4$Ni$_3$O$_{10}$, the MMT is found at ~157.6 K. For La$_4$Ni$_3$O$_{10}$, the MMT depends on the lattice symmetry: 147.5 K for $Bmab$ vs. 138.6 K for $P$2$_1$/$a$. Lattice anomalies were found at the MMT that, when considered together with the pronounced dependence of the transition temperature on subtle structural differences between $Bmab$ and $P$2$_1$/$a$ phases, demonstrates a not insignificant coupling between electronic and lattice degrees of freedom in these trilayer nickelates.

Download