Do you want to publish a course? Click here

Finding NHIM in 2 and 3 degrees-of-freedom with Henon-Heiles type potential

66   0   0.0 ( 0 )
 Added by Shibabrat Naik
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the capability of Lagrangian descriptors for revealing the high dimensional phase space structures that are of interest in nonlinear Hamiltonian systems with index-1 saddle. These phase space structures include normally hyperbolic invariant manifolds and their stable and unstable manifolds, and act as codimenision-1 barriers to phase space transport. The method is applied to classical two and three degrees-of-freedom Hamiltonian systems which have implications for myriad applications in physics and chemistry.



rate research

Read More

Phase space structures such as dividing surfaces, normally hyperbolic invariant manifolds, their stable and unstable manifolds have been an integral part of computing quantitative results such as transition fraction, stability erosion in multi-stable mechanical systems, and reaction rates in chemical reaction dynamics. Thus, methods that can reveal their geometry in high dimensional phase space (4 or more dimensions) need to be benchmarked by comparing with known results. In this study, we assess the capability of one such method called Lagrangian descriptor for revealing the types of high dimensional phase space structures associated with index-1 saddle in Hamiltonian systems. The Lagrangian descriptor based approach is applied to two and three degree-of-freedom quadratic Hamiltonian systems where the high dimensional phase space structures are known, that is as closed-form analytical expressions. This leads to a direct comparison of features in the Lagrangian descriptor plots and the phase space structures intersection with an isoenergetic two-dimensional surface and hence provides a validation of the approach.
387 - Luke M. Butcher 2017
I obtain the quantum correction $Delta V_mathrm{eff}= (hbar^2/8m) [(1- 4xi frac{d+1}{d})(mathcal{S})^2 + 2(1-4xi)mathcal{S}]$ that appears in the effective potential whenever a compact $d$-dimensional subspace (of volume $propto exp[mathcal{S}(x)]$) is discarded from the configuration space of a nonrelativistic particle of mass $m$ and curvature coupling parameter $xi$. This correction gives rise to a force $-langleDelta V_mathrm{eff}rangle$ that pushes the expectation value $langle xrangle$ off its classical trajectory. Because $Delta V_mathrm{eff}$ does not depend on the details of the discarded subspace, these results constitute a generic model of the quantum effect of discarded variables with maximum entropy/information capacity $mathcal{S}(x)$.
In this paper Arnold diffusion is proved to be a generic phenomenon in nearly integrable convex Hamiltonian systems with arbitrarily many degrees of freedom: $$ H(x,y)=h(y)+eps P(x,y), qquad xinmathbb{T}^n, yinmathbb{R}^n,quad ngeq 3. $$ Under typical perturbation $eps P$, the system admits connecting orbit that passes through any finitely many prescribed small balls in the same energy level $H^{-1}(E)$ provided $E>min h$.
We answered the old question: does there exist a mechanical system with 3 degrees of freedom, except for the Coulomb system, which has 6 first integrals generating the Lie algebra o(4) by means of the Poisson brackets? We presented a system which is not centrally symmetric, but has such 6 first integrals. We showed also that not every mechanical system with 3 degrees of freedom possesses such Lie algebra o(4).
Chesnavichs model Hamiltonian for the reaction CH$_4^+ rightarrow$ CH$_3^+$ is known to exhibit a range of interesting dynamical phenomena including roaming. The model system consists of two parts: a rigid, symmetric top representing the CH$_3^+$ ion and a free H atom. We study roaming in this model with focus on the evolution of geometrical features of the invariant manifolds in phase space that govern roaming under variations of the mass of the free atom m and a parameter a that couples radial and angular motion. In addition, we establish an upper bound on the prominence of roaming in Chesnavichs model. The bound highlights the intricacy of roaming as a type of dynamics on the verge between isomerisation and nonreactivity as it relies on generous access to the potential wells to allow reactions as well as a prominent area of high potential that aids sufficient transfer of energy between the degrees of freedom to prevent isomerisation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا