Do you want to publish a course? Click here

Relativistic and spectator effects in leptogenesis with heavy sterile neutrinos

181   0   0.0 ( 0 )
 Added by Philipp Klose
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

For leptogenesis with heavy sterile neutrinos above the electroweak scale, asymmetries produced at early times (in the relativistic regime) are relevant, if they are protected from washout. This can occur for weak washout or when the asymmetry is partly protected by being transferred to spectator fields. We thus study the relevance of relativistic effects for leptogenesis in a minimal seesaw model with two sterile neutrinos in the strongly hierarchical limit. Starting from first principles, we derive a set of momentum-averaged fluid equations to calculate the final $B-L$ asymmetry as a function of the washout strength and for different initial conditions at order one accuracy. For this, we take the leading fluid approximation for the relativistic $CP$-even and odd rates. Assuming that spectator fields remain in chemical equilibrium, we find that for weak washout, relativistic corrections lead to a sign flip and an enhancement of the asymmetry for a vanishing initial abundance of sterile neutrinos. As an example for the effect of partially equilibrated spectators, we consider bottom-Yukawa and weak-sphaleron interactions in leptogenesis driven by sterile neutrinos with masses $gtrsim 5times10^{12}$ GeV. For a vanishing initial abundance of sterile neutrinos, this can give rise to another flip and an absolute enhancement of the final asymmetry in the strong washout regime by up to two orders of magnitude relative to the cases either without spectators or with fully equilibrated ones. These effects are less pronounced for thermal initial conditions for the sterile neutrinos. The $CP$-violating source in the relativistic regime at early times is important as it is proportional to the product of lepton-number violating and lepton-number conserving rates, and therefore less suppressed than an extrapolation of the nonrelativistic approximations may suggest.



rate research

Read More

249 - G.Mangano , G. Miele 1999
We propose a new mechanism producing a non-vanishing lepton number asymmetry, based on decays of heavy Majorana neutrinos. If they are produced out of equilibrium, as occurs in preheating scenario, and are superpositions of mass eigenstates rapidly decaying, their decay rates contains interference terms provided the mass differences $Delta m$ are small compared to widths $Gamma$. The resulting lepton asymmetry, which is the analogue of the time-integrated CP asymmetry in $B^0-bar{B}^0$ system, is found to be proportional to $Delta m/Gamma$.
We revise the bounds on heavy sterile neutrinos, especially in the case of their mixing with muon neutrinos in the charged current. We summarize the present experimental limits, and we reanalyze the existing data from the accelerator neutrino experiments and from Super-Kamiokande to set new bounds on a heavy sterile neutrino in the range of masses from 8 MeV to 390 MeV. We also discuss how the future accelerator neutrino experiments can improve the present limits.
In this work we show that from the spectrum of particles of a 3-3-1 gauge model with heavy sterile neutrinos we can have up to three Cold Dark Matter candidates as WIMPs. We obtain their relic abundance and analyze their compatibility with recent direct detection experiments, exploring the possibility of explaining the two events reported by CDMS-II. An interesting outcome of this 3-3-1 model, concerning direct detection of two WIMPs in the model, is a strong bound on the symmetry breaking scale, which imposes it to be above 3 TeV.
Neutrinos, being the only fermions in the Standard Model of Particle Physics that do not possess electromagnetic or color charges, have the unique opportunity to communicate with fermions outside the Standard Model through mass mixing. Such Standard Model-singlet fermions are generally referred to as sterile neutrinos. In this review article, we discuss the theoretical and experimental motivation for sterile neutrinos, as well as their phenomenological consequences. With the benefit of hindsight in 2020, we point out potentially viable and interesting ideas. We focus in particular on sterile neutrinos that are light enough to participate in neutrino oscillations, but we also comment on the benefits of introducing heavier sterile states. We discuss the phenomenology of eV-scale sterile neutrinos in terrestrial experiments and in cosmology, we survey the global data, and we highlight various intriguing anomalies. We also expose the severe tension that exists between different data sets and prevents a consistent interpretation of the global data in at least the simplest sterile neutrino models. We discuss non-minimal scenarios that may alleviate some of this tension. We briefly review the status of keV-scale sterile neutrinos as dark matter and the possibility of explaining the matter-antimatter asymmetry of the Universe through leptogenesis driven by yet heavier sterile neutrinos.
We explore the implications of the existence of heavy neutral fermions (i.e., sterile neutrinos) for the thermal history of the early universe. In particular, we consider sterile neutrinos with rest masses in the 100 MeV to 500 MeV range, with couplings to ordinary active neutrinos large enough to guarantee thermal and chemical equilibrium at epochs in the early universe with temperatures T > 1 GeV, but in a range to give decay lifetimes from seconds to minutes. Such neutrinos would decouple early, with relic densities comparable to those of photons, but decay out of equilibrium, with consequent prodigious entropy generation prior to, or during, Big Bang Nucleosynthesis (BBN). Most of the ranges of sterile neutrino rest mass and lifetime considered are at odds with Cosmic Microwave Background (CMB) limits on the relativistic particle contribution to energy density (e.g., as parameterized by N_eff). However, some sterile neutrino parameters can lead to an acceptable N_eff. These parameter ranges are accompanied by considerable dilution of the ordinary background relic neutrinos, possibly an adverse effect on BBN, but sometimes fall in a range which can explain measured neutrino masses in some particle physics models. A robust signature of these sterile neutrinos would be a measured N_eff not equal to 3 coupled with no cosmological signal for neutrino rest mass when the detection thresholds for these probes are below laboratory-established neutrino mass values, either as established by the atmospheric neutrino oscillation scale or direct measurements with, e.g., KATRIN or neutrino-less double beta decay experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا