Do you want to publish a course? Click here

Ship Instance Segmentation From Remote Sensing Images Using Sequence Local Context Module

83   0   0.0 ( 0 )
 Added by Yingchao Feng
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The performance of object instance segmentation in remote sensing images has been greatly improved through the introduction of many landmark frameworks based on convolutional neural network. However, the object densely issue still affects the accuracy of such segmentation frameworks. Objects of the same class are easily confused, which is most likely due to the close docking between objects. We think context information is critical to address this issue. So, we propose a novel framework called SLCMASK-Net, in which a sequence local context module (SLC) is introduced to avoid confusion between objects of the same class. The SLC module applies a sequence of dilation convolution blocks to progressively learn multi-scale context information in the mask branch. Besides, we try to add SLC module to different locations in our framework and experiment with the effect of different parameter settings. Comparative experiments are conducted on remote sensing images acquired by QuickBird with a resolution of $0.5m-1m$ and the results show that the proposed method achieves state-of-the-art performance.



rate research

Read More

In this paper, we focus on the challenging multicategory instance segmentation problem in remote sensing images (RSIs), which aims at predicting the categories of all instances and localizing them with pixel-level masks. Although many landmark frameworks have demonstrated promising performance in instance segmentation, the complexity in the background and scale variability instances still remain challenging for instance segmentation of RSIs. To address the above problems, we propose an end-to-end multi-category instance segmentation model, namely Semantic Attention and Scale Complementary Network, which mainly consists of a Semantic Attention (SEA) module and a Scale Complementary Mask Branch (SCMB). The SEA module contains a simple fully convolutional semantic segmentation branch with extra supervision to strengthen the activation of interest instances on the feature map and reduce the background noises interference. To handle the under-segmentation of geospatial instances with large varying scales, we design the SCMB that extends the original single mask branch to trident mask branches and introduces complementary mask supervision at different scales to sufficiently leverage the multi-scale information. We conduct comprehensive experiments to evaluate the effectiveness of our proposed method on the iSAID dataset and the NWPU Instance Segmentation dataset and achieve promising performance.
Training Convolutional Neural Networks (CNNs) for very high resolution images requires a large quantity of high-quality pixel-level annotations, which is extremely labor- and time-consuming to produce. Moreover, professional photo interpreters might have to be involved for guaranteeing the correctness of annotations. To alleviate such a burden, we propose a framework for semantic segmentation of aerial images based on incomplete annotations, where annotators are asked to label a few pixels with easy-to-draw scribbles. To exploit these sparse scribbled annotations, we propose the FEature and Spatial relaTional regulArization (FESTA) method to complement the supervised task with an unsupervised learning signal that accounts for neighbourhood structures both in spatial and feature terms.
130 - Lei Ding , Dong Lin , Shaofu Lin 2021
Long-range context information is crucial for the semantic segmentation of High-Resolution (HR) Remote Sensing Images (RSIs). The image cropping operations, commonly used for training neural networks, limit the perception of long-range context information in large RSIs. To break this limitation, we propose a Wide-Context Network (WiCoNet) for the semantic segmentation of HR RSIs. In the WiCoNet, apart from a conventional feature extraction network that aggregates the local information, an extra context branch is designed to explicitly model the spatial information in a larger image area. The information between the two branches is communicated through a Context Transformer, which is a novel design derived from the Vision Transformer to model the long-range context correlations. Ablation studies and comparative experiments conducted on several benchmark datasets prove the effectiveness of the proposed method. In addition, we present a new Beijing Land-Use (BLU) dataset. This is a large-scale HR satellite dataset provided with high-quality and fine-grained reference labels, which can boost future studies in this field.
We developed a real-time, high-quality semi-supervised video object segmentation algorithm. Its accuracy is on par with the most accurate, time-consuming online-learning model, while its speed is similar to the fastest template-matching method with sub-optimal accuracy. The core component of the model is a novel global context module that effectively summarizes and propagates information through the entire video. Compared to previous approaches that only use one frame or a few frames to guide the segmentation of the current frame, the global context module uses all past frames. Unlike the previous state-of-the-art space-time memory network that caches a memory at each spatio-temporal position, the global context module uses a fixed-size feature representation. Therefore, it uses constant memory regardless of the video length and costs substantially less memory and computation. With the novel module, our model achieves top performance on standard benchmarks at a real-time speed.
270 - A Hamida , A. Beno^it 2017
With the rapid development of Remote Sensing acquisition techniques, there is a need to scale and improve processing tools to cope with the observed increase of both data volume and richness. Among popular techniques in remote sensing, Deep Learning gains increasing interest but depends on the quality of the training data. Therefore, this paper presents recent Deep Learning approaches for fine or coarse land cover semantic segmentation estimation. Various 2D architectures are tested and a new 3D model is introduced in order to jointly process the spatial and spectral dimensions of the data. Such a set of networks enables the comparison of the different spectral fusion schemes. Besides, we also assess the use of a noisy ground truth (i.e. outdated and low spatial resolution labels) for training and testing the networks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا