Do you want to publish a course? Click here

A Scalable Handwritten Text Recognition System

68   0   0.0 ( 0 )
 Added by Thomas Deselaers
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Many studies on (Offline) Handwritten Text Recognition (HTR) systems have focused on building state-of-the-art models for line recognition on small corpora. However, adding HTR capability to a large scale multilingual OCR system poses new challenges. This paper addresses three problems in building such systems: data, efficiency, and integration. Firstly, one of the biggest challenges is obtaining sufficient amounts of high quality training data. We address the problem by using online handwriting data collected for a large scale production online handwriting recognition system. We describe our image data generation pipeline and study how online data can be used to build HTR models. We show that the data improve the models significantly under the condition where only a small number of real images is available, which is usually the case for HTR models. It enables us to support a new script at substantially lower cost. Secondly, we propose a line recognition model based on neural networks without recurrent connections. The model achieves a comparable accuracy with LSTM-based models while allowing for better parallelism in training and inference. Finally, we present a simple way to integrate HTR models into an OCR system. These constitute a solution to bring HTR capability into a large scale OCR system.

rate research

Read More

Offline handwriting recognition with deep neural networks is usually limited to words or lines due to large computational costs. In this paper, a less computationally expensive full page offline handwritten text recognition framework is introduced. This framework includes a pipeline that locates handwritten text with an object detection neural network and recognises the text within the detected regions using features extracted with a multi-scale convolutional neural network (CNN) fed into a bidirectional long short term memory (LSTM) network. This framework achieves comparable error rates to state of the art frameworks while using less memory and time. The results in this paper demonstrate the potential of this framework and future work can investigate production ready and deployable handwritten text recognisers.
299 - Duc Nguyen , Nhan Tran , Hung Le 2019
Convolutional Recurrent Neural Networks (CRNNs) excel at scene text recognition. Unfortunately, they are likely to suffer from vanishing/exploding gradient problems when processing long text images, which are commonly found in scanned documents. This poses a major challenge to goal of completely solving Optical Character Recognition (OCR) problem. Inspired by recently proposed memory-augmented neural networks (MANNs) for long-term sequential modeling, we present a new architecture dubbed Convolutional Multi-way Associative Memory (CMAM) to tackle the limitation of current CRNNs. By leveraging recent memory accessing mechanisms in MANNs, our architecture demonstrates superior performance against other CRNN counterparts in three real-world long text OCR datasets.
Recently, great success has been achieved in offline handwritten Chinese character recognition by using deep learning methods. Chinese characters are mainly logographic and consist of basic radicals, however, previous research mostly treated each Chinese character as a whole without explicitly considering its internal two-dimensional structure and radicals. In this study, we propose a novel radical analysis network with densely connected architecture (DenseRAN) to analyze Chinese character radicals and its two-dimensional structures simultaneously. DenseRAN first encodes input image to high-level visual features by employing DenseNet as an encoder. Then a decoder based on recurrent neural networks is employed, aiming at generating captions of Chinese characters by detecting radicals and two-dimensional structures through attention mechanism. The manner of treating a Chinese character as a composition of two-dimensional structures and radicals can reduce the size of vocabulary and enable DenseRAN to possess the capability of recognizing unseen Chinese character classes, only if the corresponding radicals have been seen in training set. Evaluated on ICDAR-2013 competition database, the proposed approach significantly outperforms whole-character modeling approach with a relative character error rate (CER) reduction of 18.54%. Meanwhile, for the case of recognizing 3277 unseen Chinese characters in CASIA-HWDB1.2 database, DenseRAN can achieve a character accuracy of about 41% while the traditional whole-character method has no capability to handle them.
Single online handwritten Chinese character recognition~(single OLHCCR) has achieved prominent performance. However, in real application scenarios, users always write multiple Chinese characters to form one complete sentence and the contextual information within these characters holds the significant potential to improve the accuracy, robustness and efficiency of sentence-level OLHCCR. In this work, we first propose a simple and straightforward end-to-end network, namely vanilla compositional network~(VCN) to tackle the sentence-level OLHCCR. It couples convolutional neural network with sequence modeling architecture to exploit the handwritten characters previous contextual information. Although VCN performs much better than the state-of-the-art single OLHCCR model, it exposes high fragility when confronting with not well written characters such as sloppy writing, missing or broken strokes. To improve the robustness of sentence-level OLHCCR, we further propose a novel deep spatial-temporal fusion network~(DSTFN). It utilizes a pre-trained autoregresssive framework as the backbone component, which projects each Chinese character into word embeddings, and integrates the spatial glyph features of handwritten characters and their contextual information multiple times at multi-layer fusion module. We also construct a large-scale sentence-level handwriting dataset, named as CSOHD to evaluate models. Extensive experiment results demonstrate that DSTFN achieves the state-of-the-art performance, which presents strong robustness compared with VCN and exiting single OLHCCR models. The in-depth empirical analysis and case studies indicate that DSTFN can significantly improve the efficiency of handwriting input, with the handwritten Chinese character with incomplete strokes being recognized precisely.
Optical character recognition (OCR) systems performance have improved significantly in the deep learning era. This is especially true for handwritten text recognition (HTR), where each author has a unique style, unlike printed text, where the variation is smaller by design. That said, deep learning based HTR is limited, as in every other task, by the number of training examples. Gathering data is a challenging and costly task, and even more so, the labeling task that follows, of which we focus here. One possible approach to reduce the burden of data annotation is semi-supervised learning. Semi supervised methods use, in addition to labeled data, some unlabeled samples to improve performance, compared to fully supervised ones. Consequently, such methods may adapt to unseen images during test time. We present ScrabbleGAN, a semi-supervised approach to synthesize handwritten text images that are versatile both in style and lexicon. ScrabbleGAN relies on a novel generative model which can generate images of words with an arbitrary length. We show how to operate our approach in a semi-supervised manner, enjoying the aforementioned benefits such as performance boost over state of the art supervised HTR. Furthermore, our generator can manipulate the resulting text style. This allows us to change, for instance, whether the text is cursive, or how thin is the pen stroke.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا