No Arabic abstract
Meta learning is a promising solution to few-shot learning problems. However, existing meta learning methods are restricted to the scenarios where training and application tasks share the same out-put structure. To obtain a meta model applicable to the tasks with new structures, it is required to collect new training data and repeat the time-consuming meta training procedure. This makes them inefficient or even inapplicable in learning to solve heterogeneous few-shot learning tasks. We thus develop a novel and principled HierarchicalMeta Learning (HML) method. Different from existing methods that only focus on optimizing the adaptability of a meta model to similar tasks, HML also explicitly optimizes its generalizability across heterogeneous tasks. To this end, HML first factorizes a set of similar training tasks into heterogeneous ones and trains the meta model over them at two levels to maximize adaptation and generalization performance respectively. The resultant model can then directly generalize to new tasks. Extensive experiments on few-shot classification and regression problems clearly demonstrate the superiority of HML over fine-tuning and state-of-the-art meta learning approaches in terms of generalization across heterogeneous tasks.
Meta-learning algorithms aim to learn two components: a model that predicts targets for a task, and a base learner that quickly updates that model when given examples from a new task. This additional level of learning can be powerful, but it also creates another potential source for overfitting, since we can now overfit in either the model or the base learner. We describe both of these forms of metalearning overfitting, and demonstrate that they appear experimentally in common meta-learning benchmarks. We then use an information-theoretic framework to discuss meta-augmentation, a way to add randomness that discourages the base learner and model from learning trivial solutions that do not generalize to new tasks. We demonstrate that meta-augmentation produces large complementary benefits to recently proposed meta-regularization techniques.
Meta-learning enables a model to learn from very limited data to undertake a new task. In this paper, we study the general meta-learning with adversarial samples. We present a meta-learning algorithm, ADML (ADversarial Meta-Learner), which leverages clean and adversarial samples to optimize the initialization of a learning model in an adversarial manner. ADML leads to the following desirable properties: 1) it turns out to be very effective even in the cases with only clean samples; 2) it is robust to adversarial samples, i.e., unlike other meta-learning algorithms, it only leads to a minor performance degradation when there are adversarial samples; 3) it sheds light on tackling the cases with limited and even contaminated samples. It has been shown by extensive experimental results that ADML consistently outperforms three representative meta-learning algorithms in the cases involving adversarial samples, on two widely-used image datasets, MiniImageNet and CIFAR100, in terms of both accuracy and robustness.
Data-efficient learning algorithms are essential in many practical applications where data collection is expensive, e.g., in robotics due to the wear and tear. To address this problem, meta-learning algorithms use prior experience about tasks to learn new, related tasks efficiently. Typically, a set of training tasks is assumed given or randomly chosen. However, this setting does not take into account the sequential nature that naturally arises when training a model from scratch in real-life: how do we collect a set of training tasks in a data-efficient manner? In this work, we introduce task selection based on prior experience into a meta-learning algorithm by conceptualizing the learner and the active meta-learning setting using a probabilistic latent variable model. We provide empirical evidence that our approach improves data-efficiency when compared to strong baselines on simulated robotic experiments.
Many (but not all) approaches self-qualifying as meta-learning in deep learning and reinforcement learning fit a common pattern of approximating the solution to a nested optimization problem. In this paper, we give a formalization of this shared pattern, which we call GIMLI, prove its general requirements, and derive a general-purpose algorithm for implementing similar approaches. Based on this analysis and algorithm, we describe a library of our design, higher, which we share with the community to assist and enable future research into these kinds of meta-learning approaches. We end the paper by showcasing the practical applications of this framework and library through illustrative experiments and ablation studies which they facilitate.
Many successful deep learning architectures are equivariant to certain transformations in order to conserve parameters and improve generalization: most famously, convolution layers are equivariant to shifts of the input. This approach only works when practitioners know the symmetries of the task and can manually construct an architecture with the corresponding equivariances. Our goal is an approach for learning equivariances from data, without needing to design custom task-specific architectures. We present a method for learning and encoding equivariances into networks by learning corresponding parameter sharing patterns from data. Our method can provably represent equivariance-inducing parameter sharing for any finite group of symmetry transformations. Our experiments suggest that it can automatically learn to encode equivariances to common transformations used in image processing tasks. We provide our experiment code at https://github.com/AllanYangZhou/metalearning-symmetries.