Do you want to publish a course? Click here

FLARe: Forecasting by Learning Anticipated Representations

66   0   0.0 ( 0 )
 Added by Joie Yeahuay Wu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Computational models that forecast the progression of Alzheimers disease at the patient level are extremely useful tools for identifying high risk cohorts for early intervention and treatment planning. The state-of-the-art work in this area proposes models that forecast by using latent representations extracted from the longitudinal data across multiple modalities, including volumetric information extracted from medical scans and demographic info. These models incorporate the time horizon, which is the amount of time between the last recorded visit and the future visit, by directly concatenating a representation of it to the data latent representation. In this paper, we present a model which generates a sequence of latent representations of the patient status across the time horizon, providing more informative modeling of the temporal relationships between the patients history and future visits. Our proposed model outperforms the baseline in terms of forecasting accuracy and F1 score with the added benefit of robustly handling missing visits.



rate research

Read More

In this paper, we advocate for representation learning as the key to mitigating unfair prediction outcomes downstream. Motivated by a scenario where learned representations are used by third parties with unknown objectives, we propose and explore adversarial representation learning as a natural method of ensuring those parties act fairly. We connect group fairness (demographic parity, equalized odds, and equal opportunity) to different adversarial objectives. Through worst-case theoretical guarantees and experimental validation, we show that the choice of this objective is crucial to fair prediction. Furthermore, we present the first in-depth experimental demonstration of fair transfer learning and demonstrate empirically that our learned representations admit fair predictions on new tasks while maintaining utility, an essential goal of fair representation learning.
In this paper, we investigate the suitability of state-of-the-art representation learning methods to the analysis of behavioral similarity of moving individuals, based on CDR trajectories. The core of the contribution is a novel methodological framework, mob2vec, centered on the combined use of a recent symbolic trajectory segmentation method for the removal of noise, a novel trajectory generalization method incorporating behavioral information, and an unsupervised technique for the learning of vector representations from sequential data. Mob2vec is the result of an empirical study conducted on real CDR data through an extensive experimentation. As a result, it is shown that mob2vec generates vector representations of CDR trajectories in low dimensional spaces which preserve the similarity of the mobility behavior of individuals.
80 - Xu Chen , Ya Zhang , Ivor Tsang 2020
Graph neural networks (GNN), as a popular methodology for node representation learning on graphs, currently mainly focus on preserving the smoothness and identifiability of node representations. A robust node representation on graphs should further hold the stability property which means a node representation is resistant to slight perturbations on the input. In this paper, we introduce the stability of node representations in addition to the smoothness and identifiability, and develop a novel method called contrastive graph neural networks (CGNN) that learns robust node representations in an unsupervised manner. Specifically, CGNN maintains the stability and identifiability by a contrastive learning objective, while preserving the smoothness with existing GNN models. Furthermore, the proposed method is a generic framework that can be equipped with many other backbone models (e.g. GCN, GraphSage and GAT). Extensive experiments on four benchmarks under both transductive and inductive learning setups demonstrate the effectiveness of our method in comparison with recent supervised and unsupervised models.
236 - Chao Shang , Jie Chen , Jinbo Bi 2021
Time series forecasting is an extensively studied subject in statistics, economics, and computer science. Exploration of the correlation and causation among the variables in a multivariate time series shows promise in enhancing the performance of a time series model. When using deep neural networks as forecasting models, we hypothesize that exploiting the pairwise information among multiple (multivariate) time series also improves their forecast. If an explicit graph structure is known, graph neural networks (GNNs) have been demonstrated as powerful tools to exploit the structure. In this work, we propose learning the structure simultaneously with the GNN if the graph is unknown. We cast the problem as learning a probabilistic graph model through optimizing the mean performance over the graph distribution. The distribution is parameterized by a neural network so that discrete graphs can be sampled differentiably through reparameterization. Empirical evaluations show that our method is simpler, more efficient, and better performing than a recently proposed bilevel learning approach for graph structure learning, as well as a broad array of forecasting models, either deep or non-deep learning based, and graph or non-graph based.
As machine learning systems get widely adopted for high-stake decisions, quantifying uncertainty over predictions becomes crucial. While modern neural networks are making remarkable gains in terms of predictive accuracy, characterizing uncertainty over the parameters of these models is challenging because of the high dimensionality and complex correlations of the network parameter space. This paper introduces a novel variational inference framework for Bayesian neural networks that (1) encodes complex distributions in high-dimensional parameter space with representations in a low-dimensional latent space, and (2) performs inference efficiently on the low-dimensional representations. Across a large array of synthetic and real-world datasets, we show that our method improves uncertainty characterization and model generalization when compared with methods that work directly in the parameter space.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا