Do you want to publish a course? Click here

Modelling the periodical variations in multiband polarisation and photometry for discs of binary Be stars

279   0   0.0 ( 0 )
 Added by Despina Panoglou
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The tidal interaction of a Be star with a binary companion forms two spiral arms that cause orbital modulation of the Be disc structure. The aim of this work is to identify observables in which this modulation is apparent. The structure of a Be disc in a coplanar circular binary system is computed with a smoothed-particle hydrodynamics code, and a radiation transfer code calculates the spectral energy distribution. Line depolarisation was confirmed, with polarisation profiles nearly reverse to emission-line profiles. The continuum flux maximizes for pole-on discs, but photometric variability maximizes for edge-on discs. The linear polarisation exhibits one or two maxima per orbital cycle. While polarisation variability in visible passbands is important only at low inclinations, infrared bands may demonstrate high orbital variability even at large inclinations. More evident is the modulation in the polarisation angle (PA) for low inclinations. The latter can be used to track azimuthal asymmetries for pole-on discs, where the spectroscopic variability in the violet-to-red (V/R) emission-component ratio disappears. PA reversals coincide with phases where V/R=1, tracking lines of sight directed towards regions where the approaching and receding arms overlap. Continuum flux and polarisation are mostly in phase for neighbouring wavelength regions. It is suggested that studies of non-symmetric discs distorted by tidal forces from a secondary star may be used to study disc variabilities of other origins.



rate research

Read More

Be stars are surrounded by outflowing circumstellar matter structured in the form of decretion discs. They are often members of binary systems, where it is expected that the decretion disc interacts both radiatively and gravitationally with the companion. In this work we study how various orbital (period, mass ratio and eccentricity) and disc (viscosity) parameters affect the disc structure in coplanar systems. We simulate such binaries with the use of a smoothed particle hydrodynamics code. The main effects of the secondary on the disc are its truncation and the accumulation of material inwards of truncation. We find two cases with respect to the effects of eccentricity: (i) In circular or nearly circular prograde orbits, the disc maintains a rotating, constant in shape, configuration, which is locked to the orbital phase. The disc is smaller in size, more elongated and more massive for low viscosity parameter, small orbital separation and/or high mass ratio. (ii) Highly eccentric orbits are more complex, with the disc structure and total mass strongly dependent on the orbital phase and the distance to the secondary. We also study the effects of binarity in the disc continuum emission. Since the infrared and radio SED are sensitive to the disc size and density slope, the truncation and matter accumulation result in considerable modifications in the emergent spectrum. We conclude that binarity can serve as an explanation for the variability exhibited in observations of Be stars, and that our model can be used to detect invisible companions.
We use a smoothed particle hydrodynamics (SPH) code to examine the effects of misaligned binary companions on Be star discs. We systematically vary the degree of misalignment between the disc and the binary orbit, as well as the disc viscosity and orbital period to study their effects on the density in the inner and outer parts of the disc. We find that varying the degree of misalignment, the viscosity, and the orbital period affects both the truncation radius and the density structure of the outer disc, while the inner disc remains mostly unaffected. We also investigate the tilting of the disc in the innermost part of the disc and find the tilt increases with radius until reaching a maximum around 5 stellar radii. The direction of the line of nodes, with respect to the equator of the central star, is found to be offset compared to the orbital line of nodes, and to vary periodically in time, with a period of half a orbital phase. We also compare the scale height of our discs with the analytical scale height of an isothermal disc, which increases with radius as $r^{1.5}$. We find that this formula reproduces the scale height well for both aligned and misaligned systems but underestimates the scale height in regions of the disc where density enhancements develop.
The first results of radiative transfer calculations on decretion discs of binary Be stars are presented. A smoothed particle hydrodynamics code computes the structure of Be discs in coplanar circular binary systems for a range of orbital and disc parameters. The resulting disc configuration consists of two spiral arms, and can be given as input into a Monte Carlo code, which calculates the radiative transfer along the line of sight for various observational coordinates. Making use of the property of steady disc structure in coplanar circular binaries, observables are computed as functions of the orbital phase. Orbital-phase series of line profiles are given for selected parameter sets under various viewing angles, to allow comparison with observations. Flat-topped profiles with and without superimposed multiple structures are reproduced, showing, for example, that triple-peaked profiles do not have to be necessarily associated with warped discs and misaligned binaries. It is demonstrated that binary tidal effects give rise to phase-locked variability of the violet-to-red (V/R) ratio of hydrogen emission lines. The V/R ratio exhibits two maxima per cycle; in certain cases those maxima are equal, leading to a clear new V/R cycle every half orbital period. This study opens a way in identifying binaries and in constraining the parameters of binary systems that exhibit phase-locked variations induced by tidal interaction with a companion star.
Herbig Ae/Be objects are pre-main sequence stars surrounded by gas- and dust-rich circumstellar discs. These objects are in the throes of star and planet formation, and their characterisation informs us of the processes and outcomes of planet formation processes around intermediate mass stars. Here we analyse the spectral energy distributions of disc host stars observed by the Herschel Open Time Key Programme `Gas in Protoplanetary Systems. We present Herschel/PACS far-infrared imaging observations of 22 Herbig Ae/Bes and 5 debris discs, combined with ancillary photometry spanning ultraviolet to sub-millimetre wavelengths. From these measurements we determine the diagnostics of disc evolution, along with the total excess, in three regimes spanning near-, mid-, and far-infrared wavelengths. Using appropriate statistical tests, these diagnostics are examined for correlations. We find that the far-infrared flux, where the disc becomes optically thin, is correlated with the millimetre flux, which provides a measure of the total dust mass. The ratio of far-infrared to sub-millimetre flux is found to be greater for targets with discs that are brighter at millimetre wavelengths and that have steeper sub-millimetre slopes. Furthermore, discs with flared geometry have, on average, larger excesses than flat geometry discs. Finally, we estimate the extents of these discs (or provide upper limits) from the observations.
Polidan (1976) suggested that Be stars showing the CaII IR triplet in emission are interacting binaries. With the advent of the Gaia satellite, which will host a spectrometer to observe stars in the range 8470--8750 AA, we carried out a spectroscopic survey of 150 Be stars, including Be binaries. We show that the Ca II triplet in emission, often connected with emission in Paschen lines, is an indicator of a peculiar environment in a Be star disc rather than a signature of an interacting binary Be star. However, Ca II emission without visible emission in Paschen lines is observed in interacting binary stars, as well as in peculiar objects. During the survey, a new interacting Be binary - HD 81357 - was discovered.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا