Do you want to publish a course? Click here

Monitoring Mobile and Spatially Distributed Cyber-Physical Systems

268   0   0.0 ( 0 )
 Added by Ezio Bartocci
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Cyber-Physical Systems~(CPS) consist of collaborative, networked and tightly intertwined computational (logical) and physical components, each operating at different spatial and temporal scales. Hence, the spatial and temporal requirements play an essential role for their correct and safe execution. Furthermore, the local interactions among the system components result in global spatio-temporal emergent behaviors often impossible to predict at the design time. In this work, we pursue a complementary approach by introducing STREL a novel spatio-temporal logic that enables the specification of spatio-temporal requirements and their monitoring over the execution of mobile and spatially distributed CPS. Our logic extends the Signal Temporal Logic with two novel spatial operators reach and escape from which is possible to derive other spatial modalities such as everywhere, somewhere and surround. These operators enable a monitoring procedure where the satisfaction of the property at each location depends only on the satisfaction of its neighbours, opening the way to future distributed online monitoring algorithms. We propose both a qualitative and quantitative semantics based on constraint semirings, an algebraic structure suitable for constraint satisfaction and optimisation. We prove that, for a subclass of models, all the spatial properties expressed with reach and escape, using euclidean distance, satisfy all the model transformations using rotation, reflection and translation. Finally, we provide an offline monitoring algorithm for STREL and, to demonstrate the feasibility of our approach, we show its application using the monitoring of a simulated mobile ad-hoc sensor network as running example.



rate research

Read More

The software running in embedded or cyber-physical systems (CPS) is typically of proprietary nature, so users do not know precisely what the systems they own are (in)capable of doing. Most malfunctionings of such systems are not intended by the manufacturer, but some are, which means these cannot be classified as bugs or security loopholes. The most prominent examples have become public in the diesel emissions scandal, where millions of cars were found to be equipped with software violating the law, altogether polluting the environment and putting human health at risk. The behaviour of the software embedded in these cars was intended by the manufacturer, but it was not in the interest of society, a phenomenon that has been called software doping. Doped software is significantly different from buggy or insecure software and hence it is not possible to use classical verification and testing techniques to discover and mitigate software doping. The work presented in this paper builds on existing definitions of software doping and lays the theoretical foundations for conducting software doping tests, so as to enable attacking evil manufacturers. The complex nature of software doping makes it very hard to effectuate doping tests in practice. We explain the biggest challenges and provide efficient solutions to realise doping tests despite this complexity.
Safety-critical distributed cyber-physical systems (CPSs) have been found in a wide range of applications. Notably, they have displayed a great deal of utility in intelligent transportation, where autonomous vehicles communicate and cooperate with each other via a high-speed communication network. Such systems require an ability to identify maneuvers in real-time that cause dangerous circumstances and ensure the implementation always meets safety-critical requirements. In this paper, we propose a real-time decentralized reachability approach for safety verification of a distributed multi-agent CPS with the underlying assumption that all agents are time-synchronized with a low degree of error. In the proposed approach, each agent periodically computes its local reachable set and exchanges this reachable set with the other agents with the goal of verifying the system safety. Our method, implemented in Java, takes advantages of the timing information and the reachable set information that are available in the exchanged messages to reason about the safety of the whole system in a decentralized manner. Any particular agent can also perform local safety verification tasks based on their local clocks by analyzing the messages it receives. We applied the proposed method to verify, in real-time, the safety properties of a group of quadcopters performing a distributed search mission.
One of the advantages of adopting a Model Based Development (MBD) process is that it enables testing and verification at early stages of development. However, it is often desirable to not only verify/falsify certain formal system specifications, but also to automatically explore the properties that the system satisfies. In this work, we present a framework that enables property exploration for Cyber-Physical Systems. Namely, given a parametric specification with multiple parameters, our solution can automatically infer the ranges of parameters for which the property does not hold on the system. In this paper, we consider parametric specifications in Metric or Signal Temporal Logic (MTL or STL). Using robust semantics for MTL, the parameter mining problem can be converted into a Pareto optimization problem for which we can provide an approximate solution by utilizing stochastic optimization methods. We include algorithms for the exploration and visualization of multi-parametric specifications. The framework is demonstrated on an industrial size, high-fidelity engine model as well as examples from related literature.
The use of behavioural contracts, to specify, regulate and verify systems, is particularly relevant to runtime monitoring of distributed systems. System distribution poses major challenges to contract monitoring, from monitoring-induced information leaks to computation load balancing, communication overheads and fault-tolerance. We present mDPi, a location-aware process calculus, for reasoning about monitoring of distributed systems. We define a family of Labelled Transition Systems for this calculus, which allow formal reasoning about different monitoring strategies at different levels of abstractions. We also illustrate the expressivity of the calculus by showing how contracts in a simple contract language can be synthesised into different mDPi monitors.
Assuring the correct behavior of cyber-physical systems requires significant modeling effort, particularly during early stages of the engineering and design process when a system is not yet available for testing or verification of proper behavior. A primary motivation for `getting things right in these early design stages is that altering the design is significantly less costly and more effective than when hardware and software have already been developed. Engineering cyber-physical systems requires the construction of several different types of models, each representing a different view, which include stakeholder requirements, system behavior, and the system architecture. Furthermore, each of these models can be represented at different levels of abstraction. Formal reasoning has improved the precision and expanded the available types of analysis in assuring correctness of requirements, behaviors, and architectures. However, each is usually modeled in distinct formalisms and corresponding tools. Currently, this disparity means that a system designer must manually check that the different models are in agreement. Manually editing and checking models is error prone, time consuming, and sensitive to any changes in the design of the models themselves. Wiring diagrams and related theory provide a means for formally organizing these different but related modeling views, resulting in a compositional modeling language for cyber-physical systems. Such a categorical language can make concrete the relationship between different model views, thereby managing complexity, allowing hierarchical decomposition of system models, and formally proving consistency between models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا