Do you want to publish a course? Click here

Upper bounds for bar visibility of subgraphs and n-vertex graphs

165   0   0.0 ( 0 )
 Added by Yan Yang
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

A $t$-bar visibility representation of a graph assigns each vertex up to $t$ horizontal bars in the plane so that two vertices are adjacent if and only if some bar for one vertex can see some bar for the other via an unobstructed vertical channel of positive width. The least $t$ such that $G$ has a $t$-bar visibility representation is the bar visibility number of $G$, denoted by $b(G)$. We show that if $H$ is a spanning subgraph of $G$, then $b(H)le b(G)+1$. It follows that $b(G)le lceil n/6rceil+1$ when $G$ is an $n$-vertex graph. This improves the upper bound obtained by Chang et al. (SIAM J. Discrete Math. 18 (2004) 462).

rate research

Read More

A $t$-bar visibility representation of a graph assigns each vertex up to $t$ horizontal bars in the plane so that two vertices are adjacent if and only if some bar for one vertex can see some bar for the other via an unobstructed vertical channel of positive width. The least $t$ such that $G$ has a $t$-bar visibility representation is the bar visibility number of $G$, denoted by $b(G)$. For the complete bipartite graph $K_{m,n}$, the lower bound $b(K_{m,n})gelceil{frac{mn+4}{2m+2n}}rceil$ from Eulers Formula is well known. We prove that equality holds.
The feedback vertex number $tau(G)$ of a graph $G$ is the minimum number of vertices that can be deleted from $G$ such that the resultant graph does not contain a cycle. We show that $tau(S_p^n)=p^{n-1}(p-2)$ for the Sierpi{n}ski graph $S_p^n$ with $pgeq 2$ and $ngeq 1$. The generalized Sierpi{n}ski triangle graph $hat{S_p^n}$ is obtained by contracting all non-clique edges from the Sierpi{n}ski graph $S_p^{n+1}$. We prove that $tau(hat{S}_3^n)=frac {3^n+1} 2=frac{|V(hat{S}_3^n)|} 3$, and give an upper bound for $tau(hat{S}_p^n)$ for the case when $pgeq 4$.
The well-known Disjoint Paths problem is to decide if a graph contains k pairwise disjoint paths, each connecting a different terminal pair from a set of k distinct pairs. We determine, with an exception of two cases, the complexity of the Disjoint Paths problem for $H$-free graphs. If $k$ is fixed, we obtain the $k$-Disjoint Paths problem, which is known to be polynomial-time solvable on the class of all graphs for every $k geq 1$. The latter does no longer hold if we need to connect vertices from terminal sets instead of terminal pairs. We completely classify the complexity of $k$-Disjoint Connected Subgraphs for $H$-free graphs, and give the same almost-complete classification for Disjoint Connected Subgraphs for $H$-free graphs as for Disjoint Paths.
We generalise the standard constructions of a Cayley graph in terms of a group presentation by allowing some vertices to obey different relators than others. The resulting notion of presentation allows us to represent every vertex transitive graph. As an intermediate step, we prove that every countably infinite, connected, vertex transitive graph has a perfect matching. Incidentally, we construct an example of a 2-ended cubic vertex transitive graph which is not a Cayley graph, answering a question of Watkins from 1990.
It is an intriguing question to see what kind of information on the structure of an oriented graph $D$ one can obtain if $D$ does not contain a fixed oriented graph $H$ as a subgraph. The related question in the unoriented case has been an active area of research, and is relatively well-understood in the theory of quasi-random graphs and extremal combinatorics. In this paper, we consider the simplest cases of such a general question for oriented graphs, and provide some results on the global behavior of the orientation of $D$. For the case that $H$ is an oriented four-cycle we prove: in every $H$-free oriented graph $D$, there is a pair $A,Bssq V(D)$ such that $e(A,B)ge e(D)^{2}/32|D|^{2}$ and $e(B,A)le e(A,B)/2$. We give a random construction which shows that this bound on $e(A,B)$ is best possible (up to the constant). In addition, we prove a similar result for the case $H$ is an oriented six-cycle, and a more precise result in the case $D$ is dense and $H$ is arbitrary. We also consider the related extremal question in which no condition is put on the oriented graph $D$, and provide an answer that is best possible up to a multiplicative constant. Finally, we raise a number of related questions and conjectures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا