Do you want to publish a course? Click here

Supergranular turbulence in a quiet Sun: Lagrangian coherent structures

72   0   0.0 ( 0 )
 Added by Rodrigo Miranda
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The quiet Sun exhibits a wealth of magnetic activities that are fundamental for our understanding of solar and astrophysical magnetism. The magnetic fields in the quiet Sun are observed to evolve coherently, interacting with each other to form distinguished structures as they are advected by the horizontal photospheric flows. We study coherent structures in photospheric flows in a region of quiet Sun consisted of supergranules. Supergranular turbulence is investigated by detecting hyperbolic and elliptic Lagrangian coherent structures (LCS) using the horizontal velocity fields derived from Hinode intensity maps. Repelling/attracting LCS are found by computing the forward/backward finite-time Lyapunov exponent (FTLE). The Lagrangian centre of a supergranular cell is given by the local maximum of the forward FTLE; the Lagrangian boundaries of supergranular cells are given by the ridges of the backward FTLE. Objective velocity vortices are found by calculating the Lagrangian-averaged vorticity deviation, and false vortices are filtered by applying a criterion given by the displacement vector. The Lagrangian centres of neighboring supergranular cells are interconnected by ridges of the repelling LCS, which provide the transport barriers that allow the formation of vortices and the concentration of strong magnetic fields in the valleys of the repelling LCS. The repelling LCS also reveal the most likely sites for magnetic reconnection. We show that the ridges of the attracting LCS expose the locations of the sinks of photospheric flows at supergranular junctions, which are the preferential sites for the formation of kG magnetic flux tubes and persistent vortices.



rate research

Read More

We report on the dynamical interaction of quiet-Sun magnetic fields and granular convection in the solar photosphere as seen by textsc{Sunrise}. We use high spatial resolution (0farcs 15--0farcs 18) and temporal cadence (33 s) spectropolarimetric Imaging Magnetograph eXperiment data, together with simultaneous CN and Ca,textsc{ii},H filtergrams from textsc{Sunrise} Filter Imager. We apply the SIR inversion code to the polarimetric data in order to infer the line of sight velocity and vector magnetic field in the photosphere. The analysis reveals bundles of individual flux tubes evolving as a single entity during the entire 23 minute data set. The group shares a common canopy in the upper photospheric layers, while the individual tubes continually intensify, fragment and merge in the same way that chains of bright points in photometric observations have been reported to do. The evolution of the tube cores are driven by the local granular convection flows. They intensify when they are compressed by surrounding granules and split when they are squeezed between two moving granules. The resulting fragments are usually later regrouped in intergranular lanes by the granular flows. The continual intensification, fragmentation and coalescence of flux results in magnetic field oscillations of the global entity. From the observations we conclude that the magnetic field oscillations first reported by citet{2011ApJ...730L..37M} correspond to the forcing by granular motions and not to characteristic oscillatory modes of thin flux tubes.
IMaX/Sunrise has recently reported the temporal evolution of highly dynamic and strongly Doppler shifted Stokes V signals in the quiet Sun. We attempt to identify the same quiet-Sun jets in the Hinode spectropolarimeter (SP) data set. We generate combinations of linear polarization magnetograms with blue- and redshifted far-wing circular polarization magnetograms to allow an easy identification of the quiet-Sun jets. The jets are identified in the Hinode data where both red- and blueshifted cases are often found in pairs. They appear next to regions of transverse fields that exhibit quiet-Sun neutral lines. They also have a clear tendency to occur in the outer boundary of the granules. These regions always display highly displaced and anomalous Stokes V profiles. The quiet Sun is pervaded with jets formed when new field regions emerge at granular scales loaded with horizontal field lines that interact with their surroundings. This interaction is suggestive of some form of reconnection of the involved field lines that generates the observed high speed flows.
We investigate the fine structure of magnetic fields in the atmosphere of the quiet Sun. We use photospheric magnetic field measurements from {sc Sunrise}/IMaX with unprecedented spatial resolution to extrapolate the photospheric magnetic field into higher layers of the solar atmosphere with the help of potential and force-free extrapolation techniques. We find that most magnetic loops which reach into the chromosphere or higher have one foot point in relatively strong magnetic field regions in the photosphere. $91%$ of the magnetic energy in the mid chromosphere (at a height of 1 Mm) is in field lines, whose stronger foot point has a strength of more than 300 G, i.e. above the equipartition field strength with convection. The loops reaching into the chromosphere and corona are also found to be asymmetric in the sense that the weaker foot point has a strength $B < 300$ G and is located in the internetwork. Such loops are expected to be strongly dynamic and have short lifetimes, as dictated by the properties of the internetwork fields.
We present a visual determination of the number of bright points (BPs) existing in the quiet Sun, which are structures though to trace intense kG magnetic concentrations. The measurement is based on a 0.1 arcsec angular resolution G-band movie obtained with the Swedish Solar Telescope at the solar disk center. We find 0.97 BPs/Mm^2, which is a factor three larger than any previous estimate. It corresponds to 1.2 BPs per solar granule. Depending on the details of the segmentation, the BPs cover between 0.9% and 2.2% of the solar surface. Assuming their field strength to be 1.5 kG, the detected BPs contribute to the solar magnetic flux with an unsigned flux density between 13 G and 33 G. If network and inter-network regions are counted separately, they contain 2.2 BPs/Mm^2 and 0.85 BPs/Mm^2, respectively.
Results of a statistical analysis of solar granulation are presented. A data set of 36 images of a quiet Sun area on the solar disk center was used. The data were obtained with the 1.6 m clear aperture New Solar Telescope (NST) at Big Bear Solar Observatory (BBSO) and with a broad-band filter centered at the TiO (705.7 nm) spectral line. The very high spatial resolution of the data (diffraction limit of 77 km and pixel scale of 0.$$0375) augmented by the very high image contrast (15.5$pm$0.6%) allowed us to detect for the first time a distinct subpopulation of mini-granular structures. These structures are dominant on spatial scales below 600 km. Their size is distributed as a power law with an index of -1.8 (which is close to the Kolmogorovs -5/3 law) and no predominant scale. The regular granules display a Gaussian (normal) size distribution with a mean diameter of 1050 km. Mini-granular structures contribute significantly to the total granular area. They are predominantly confined to the wide dark lanes between regular granules and often form chains and clusters, but different from magnetic bright points. A multi-fractality test reveals that the structures smaller than 600 km represent a multi-fractal, whereas on larger scales the granulation pattern shows no multi-fractality and can be considered as a Gaussian random field. The origin, properties and role of the newly discovered population of mini-granular structures in the solar magneto-convection are yet to be explored.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا