No Arabic abstract
We study the potential of the LHCb experiment to discover, for the first time, the $mu^+mu^-$ true muonium bound state. We propose a search for the vector $1^3S_1$ state, $mathcal{T!M}$, which kinetically mixes with the photon and dominantly decays to $e^+e^-$. We demonstrate that a search for $eta to gamma mathcal{T!M}$, $mathcal{T!M}to e^+e^-$ in a displaced vertex can exceed a significance of 5 standard deviations assuming statistical uncertainties. We present two possible searches: an inclusive search for the $e^+e^-$ vertex, and an exclusive search which requires an additional photon and a reconstruction of the $eta$ mass.
In this paper we investigate the production of a true muonium state, which is an atom consisting of a $mu^+ mu^-$ bound state, by $gamma gamma$ interactions in ultraperipheral $PbPb$ collisions considering an accurate treatment of the absorptive corrections and for the nuclear form factor. The rapidity distributions and cross sections are estimated considering the RHIC, LHC and FCC energies. Our results indicate that the experimental analysis can be useful to observe, for the first time, the true muonium state.
In this work, we study the lepton flavor and lepton number violating $B_{c}$ meson decays via two intermediate on-shell Majorana neutrinos $N_j$ into two charged leptons and a charged pion $B_{c}^{pm} to mu^{pm} N_j to mu^{pm} tau^{pm} pi^{mp}$. We evaluated the possibility to measure the modulation of the decay width along the detector length produced as a consequence of the lepton flavor violating process, in a scenario where the heavy neutrinos masses range between $2.0$ GeV $leq M_N leq 6.0$ GeV. We study some realistic conditions which could lead to the observation of this phenomenon at futures $B$ factories such HL-LHCb.
Experiments designed to measure neutrino oscillations also provide major opportunities for discovering very weakly coupled states. In order to produce neutrinos, experiments such as LSND collide thousands of Coulombs of protons into fixed targets, while MINOS and MiniBooNE also focus and then dump beams of muons. The neutrino detectors beyond these beam dumps are therefore an excellent arena in which to look for long-lived pseudoscalars or for vector bosons that kinetically mix with the photon. We show that these experiments have significant sensitivity beyond previous beam dumps, and are able to partially close the gap between laboratory experiments and supernovae constraints on pseudoscalars. Future upgrades to the NuMI beamline and Project X will lead to even greater opportunities for discovery. We also discuss thin target experiments with muon beams, such as those available in COMPASS, and show that they constitute a powerful probe for leptophilic PNGBs.
We analyze the phenomenology of the top-pion and top-Higgs states in models with strong top dynamics, and translate the present LHC searches for the Standard Model Higgs into bounds on these scalar states. We explore the possibility that the new state at a mass of approximately 125 GeV observed at the LHC is consistent with a neutral pseudoscalar top-pion state. We demonstrate that a neutral pseudoscalar top-pion can generate the diphoton signal at the observed rate. However, the region of model parameter space where this is the case does not correspond to classic topcolor-assisted technicolor scenarios with degenerate charged and neutral top-pions and a top-Higgs mass of order twice the top mass; rather, additional isospin violation would need to be present and the top dynamics would be more akin to that in top seesaw models. Moreover, the interpretation of the new state as a top-pion can be sustained only if the ZZ (four-lepton) and WW (two-lepton plus missing energy) signatures initially observed at the 3? level decline in significance as additional data is accrued.
It is interesting to search for new physics beyond the standard model at LHCb. We suggest that weak decays of doubly charmed baryon such as $Xi_{cc}(3520)^+, Xi_{cc}^{++}$ to charmless final states would be a possible signal for new physics. In this work, we consider two models, i.e. the unparticle and $Z$ as examples to study such possibilities. We also discuss the cases for $Xi^0_{bb}, Xi_{bb}^-$ which have not been observed yet, but one can expect to find them when LHCb begins running. Our numerical results show that these two models cannot result in sufficiently large decay widths, therefore if such modes are observed at LHCb, there must be a new physics other than the unparticle or $Z$ models.