Significant advances have been made over the past decade in the characterization of multiple protostar systems, enabled by the Karl G. Jansky Very Large Array (VLA), high-resolution infrared observations with the Hubble Space Telescope, and ground-based facilities. To further understand the mechanism(s) of multiple star formation, a combination of statistics, high-angular resolution radio/millimeter continuum imaging, characterization of kinematic structure, magnetic fields via polarimetry, and comparison with numerical simulations are needed. Thus, understanding the origin of stellar multiplicity in different regimes of companion separation will soon be within reach. However, to overcome challenges that studies in this field are now confronted with, a range of new capabilities are required: a new millimeter/centimeter wave facility with 10 mas resolution at {lambda}=1 cm, space-based near to far-infrared observatories, continued development of low to high resolution spectroscopy on 3m to 10m class telescopes, and an ELT-class telescope with near to mid-infrared imaging/spectroscopic capability.