Fractons are a type of emergent quasiparticle which cannot move freely in isolation, but can easily move in bound pairs. Similar phenomenology is found in boson-affected hopping models, encountered in the study of polaron systems and hole-doped Ising antiferromagnets, in which motion of a particle requires the creation or absorption of bosonic excitations. We show that boson-affected hopping models can provide a natural realization of fractons, either approximately or exactly, depending on the details of the system. We first consider a generic one-dimensional boson-affected hopping model, in which we show that single particles move only at sixth order in perturbation theory, while motion of bound states occurs at second order, allowing for a broad parameter regime exhibiting approximate fracton phenomenology. We explicitly map the model onto a fracton Hamiltonian featuring conservation of dipole moment via integrating out the mediating bosons. We then consider a special type of boson-affected hopping models with mutual hard-core repulsion between particles and bosons, accessible in hole-doped mixed-dimensional Ising antiferromagnets, in which the hole motion is one dimensional in an otherwise two-dimensional antiferromagnetic background. We show that this system, which is within the current reach of ultracold-atom experiments, exhibits perfect fracton behavior to all orders in perturbation theory, thereby enabling the experimental study of dipole-conserving field theories. We further discuss diagnostic signatures of fractonic behavior in these systems. In studying these models, we also identify simple effective one-dimensional microscopic Hamiltonians featuring perfect fractonic behavior, paving the way to future studies on fracton physics in lower dimensions.