Nanophotonic quantum storage at telecommunications wavelength


Abstract in English

Quantum memories for light are important components for future long distance quantum networks. We present on-chip quantum storage of telecommunications band light at the single photon level in an ensemble of erbium-167 ions in an yttrium orthosilicate photonic crystal nanobeam resonator. Storage times of up to 10 $mu$s are demonstrated using an all-optical atomic frequency comb protocol in a dilution refrigerator under a magnetic field of 380 mT. We show this quantum storage platform to have high bandwidth, high fidelity, and multimode capacity, and we outline a path towards an efficient erbium-167 quantum memory for light.

Download