No Arabic abstract
This Letter reports the first extraction of individual antineutrino spectra from $^{235}$U and $^{239}$Pu fission and an improved measurement of the prompt energy spectrum of reactor antineutrinos at Daya Bay. The analysis uses $3.5times 10^6$ inverse beta-decay candidates in four near antineutrino detectors in 1958 days. The individual antineutrino spectra of the two dominant isotopes, $^{235}$U and $^{239}$Pu, are extracted using the evolution of the prompt spectrum as a function of the isotope fission fractions. In the energy window of 4--6~MeV, a 7% (9%) excess of events is observed for the $^{235}$U ($^{239}$Pu) spectrum compared with the normalized Huber-Mueller model prediction. The significance of discrepancy is $4.0sigma$ for $^{235}$U spectral shape compared with the Huber-Mueller model prediction. The shape of the measured inverse beta-decay prompt energy spectrum disagrees with the prediction of the Huber-Mueller model at $5.3sigma$. In the energy range of 4--6~MeV, a maximal local discrepancy of $6.3sigma$ is observed.
A joint determination of the reactor antineutrino spectra resulting from the fission of $^{235}$U and $^{239}$Pu has been carried out by the Daya Bay and PROSPECT collaborations. This Letter reports the level of consistency of $^{235}$U spectrum measurements from the two experiments and presents new results from a joint analysis of both data sets. The measurements are found to be consistent. The combined analysis reduces the degeneracy between the dominant $^{235}$U and $^{239}$Pu isotopes and improves the uncertainty of the $^{235}$U spectral shape to about 3%. The ${}^{235}$U and $^{239}$Pu antineutrino energy spectra are unfolded from the jointly deconvolved reactor spectra using the Wiener-SVD unfolding method, providing a data-based reference for other reactor antineutrino experiments and other applications. This is the first measurement of the $^{235}$U and $^{239}$Pu spectra based on the combination of experiments at low- and highly enriched uranium reactors.
This work reports a precise measurement of the reactor antineutrino flux using 2.2 million inverse beta decay (IBD) events collected with the Daya Bay near detectors in 1230 days. The dominant uncertainty on the neutron detection efficiency is reduced by 56% with respect to the previous measurement through a comprehensive neutron calibration and detailed data and simulation analysis. The new average IBD yield is determined to be $(5.91pm0.09)times10^{-43}~rm{cm}^2/rm{fission}$ with total uncertainty improved by 29%. The corresponding mean fission fractions from the four main fission isotopes $^{235}$U, $^{238}$U, $^{239}$Pu, and $^{241}$Pu are 0.564, 0.076, 0.304, and 0.056, respectively. The ratio of measured to predicted antineutrino yield is found to be $0.952pm0.014pm0.023$ ($1.001pm0.015pm0.027$) for the Huber-Mueller (ILL-Vogel) model, where the first and second uncertainty are experimental and theoretical model uncertainty, respectively. This measurement confirms the discrepancy between the world average of reactor antineutrino flux and the Huber-Mueller model.
We report a measurement of electron antineutrino oscillation from the Daya Bay Reactor Neutrino Experiment with nearly 4 million reactor $overline{ u}_{e}$ inverse beta decay candidates observed over 1958 days of data collection. The installation of a Flash-ADC readout system and a special calibration campaign using different source enclosures reduce uncertainties in the absolute energy calibration to less than 0.5% for visible energies larger than 2 MeV. The uncertainty in the cosmogenic $^9$Li and $^8$He background is reduced from 45% to 30% in the near detectors. A detailed investigation of the spent nuclear fuel history improves its uncertainty from 100% to 30%. Analysis of the relative $overline{ u}_{e}$ rates and energy spectra among detectors yields $sin^{2}2theta_{13} = 0.0856pm 0.0029$ and $Delta m^2_{32}=(2.471^{+0.068}_{-0.070})times 10^{-3}~mathrm{eV}^2$ assuming the normal hierarchy, and $Delta m^2_{32}=-(2.575^{+0.068}_{-0.070})times 10^{-3}~mathrm{eV}^2$ assuming the inverted hierarchy.
This presentation describes a measurement of the neutrino mixing parameter, sin^2(2theta_13), from the Daya Bay Reactor Neutrino Experiment. Disappearance of electron antineutrinos at a distance of ~2 km from a set of six reactors, where the reactor flux is constrained by near detectors, has been clearly observed. The result, based on the ratio of observed to expected rate of antineutrinos, using 139 days of data taken between December 24, 2011 and May 11, 2012, is sin^2(2theta_13) = 0.089 +/- 0.010(stat.) +/- 0.005(syst.). Improvements in sensitivity from inclusion of additional data, spectral analysis, and improved calibration are expected in the future.
Neutrons produced by cosmic ray muons are an important background for underground experiments studying neutrino oscillations, neutrinoless double beta decay, dark matter, and other rare-event signals. A measurement of the neutron yield in the three different experimental halls of the Daya Bay Reactor Neutrino Experiment at varying depth is reported. The neutron yield in Daya Bays liquid scintillator is measured to be $Y_n=(10.26pm 0.86)times 10^{-5}$, $(10.22pm 0.87)times 10^{-5}$, and $(17.03pm 1.22)times 10^{-5}~mu^{-1}~$g$^{-1}~$cm$^2$ at depths of 250, 265, and 860 meters-water-equivalent. These results are compared to other measurements and the simulated neutron yield in Fluka and Geant4. A global fit including the Daya Bay measurements yields a power law coefficient of $0.77 pm 0.03$ for the dependence of the neutron yield on muon energy.