Do you want to publish a course? Click here

The cosmological constant and a scalar field coupled non minimally to gravity

161   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that the combined minimal and non minimal interaction with the gravitational field may produce the generation of a cosmological constant without self-interaction of the scalar field. In the same vein we analyze the existence of states of a scalar field that by a combined interaction of minimal and non minimal coupling with the gravitational field can exhibit an unexpected property, to wit, they are acted on by the gravitational field but do not generate gravitational field. In other words, states that seems to violate the action-reaction principle. We present explicit examples of this situation in the framework of a spatially isotropic and homogeneous universe.



rate research

Read More

We study dynamics of non-minimally coupled scalar field cosmological models with Higgs-like potentials and a negative cosmological constant. In these models the inflationary stage of the Universe evolution changes into a quasi-cyclic stage of the Universe evolution with oscillation behaviour of the Hubble parameter from positive to negative values. Depending on the initial conditions the Hubble parameter can perform either one or several cycles before to become negative forever.
We show that the action of Einsteins gravity with a scalar field coupled in a generic way to spacetime curvature is invariant under a particular set of conformal transformations. These transformations relate dual theories for which the effective couplings of the theory are scaled uniformly. In the simplest case, this class of dualities reduce to the S-duality of low-energy effective action of string theory.
In this paper we discuss local averages of the energy density for the non-minimally coupled scalar quantum field, extending a previous investigation of the classical field. By an explicit example, we show that such averages are unbounded from below on the class of Hadamard states. This contrasts with the minimally coupled field, which obeys a state-independent lower bound known as a Quantum Energy Inequality (QEI). Nonetheless, we derive a generalised QEI for the non-minimally coupled scalar field, in which the lower bound is permitted to be state-dependent. This result applies to general globally hyperbolic curved spacetimes for coupling constants in the range $0<xileq 1/4$. We analyse the state-dependence of our QEI in four-dimensional Minkowski space and show that it is a nontrivial restriction on the averaged energy density in the sense that the lower bound is of lower order, in energetic terms, than the averaged energy density itself.
The stability criteria for spatially flat homogeneous and isotropic cosmological dynamical system is investigated with the interaction of a scalar field endowed with a perfect fluid.In this paper, we depict the dynamical system perspective to study, qualitatively, the scalar field cosmology under two special cases, with and without potential. For analysis with potential we use simple exponential potential form, $V_{o}e^{-lambda phi}$. We generate, by introducing new dimensionless variables, an autonomous system of ordinary differential equations $(ASODE)$ for each case and obtain respective fixed points. We also analyse the type of fixed points, nature and stability of the fixed points and how their nature and behavior reflect towards the cosmic scenarios. Throughout the whole work, the investigation of this model has shown us the deep connection between these theories and cosmic acceleration phenomena. The phase plots of the system at different conditions and different values of $gamma$ have been analyzed in detail and their interpretations have been worked out.The perturbation plots of the dynamical system have also been studied and analyzed which emphasize our analytical findings.
In this work we investigate the evolution of a Universe consisted of a scalar field, a dark matter field and non-interacting baryonic matter and radiation. The scalar field, which plays the role of dark energy, is non-minimally coupled to space-time curvature, and drives the Universe to a present accelerated expansion. The non-relativistic dark matter field interacts directly with the dark energy and has a pressure which follows from a thermodynamic theory. We show that this model can reproduce the expected behavior of the density parameters, deceleration parameter and luminosity distance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا