No Arabic abstract
Constraining the relation between the richness $N$ and the halo mass $M$ over a wide redshift range for optically-selected clusters is a key ingredient for cluster-related science in optical surveys, including the Subaru Hyper Suprime-Cam (HSC) survey. We measure stacked weak lensing profiles around 1747 HSC CAMIRA clusters over a redshift range of $0.1leq z_{rm cl}leq 1.0$ with $Ngeq 15$ using the HSC first-year shear catalog covering $sim$$140$ ${rm deg^2}$. The exquisite depth and image quality of the HSC survey allow us to measure lensing signals around the high-redshift clusters at $0.7leq z_{rm cl}leq 1.0$ with a signal-to-noise ratio of 19 in the comoving radius range $0.5lesssim Rlesssim 15 h^{-1}{rm Mpc}$. We constrain richness-mass relations $P(ln N|M,z)$ of the HSC CAMIRA clusters assuming a log-normal distribution without informative priors on model parameters, by jointly fitting to the lensing profiles and abundance measurements under both Planck and WMAP cosmological models. We show that our model gives acceptable $p$-values when we add redshift dependent terms which are proportional to $ln (1+z)$ and $[ln (1+z)]^{2}$ into the mean and scatter relations of $P(ln N|M,z)$. Such terms presumably originate from the variation of photometric redshift errors as a function of the redshift. We show that the constraints on the mean relation $langle M|N rangle$ are consistent between the Planck and WMAP models, whereas the scatter values $sigma_{ln M|N}$ for the Planck model are systematically larger than those for the WMAP model. We also show that the scatter values for the Planck model increase toward lower richness values, whereas those for the WMAP model are consistent with constant values as a function of richness. This result highlights the importance of the scatter in the mass-richness relation for cluster cosmology.
We constrain the scaling relation between optical richness ($lambda$) and halo mass ($M$) for a sample of SDSS redMaPPer galaxy clusters within the context of the {it Planck} cosmological model. We use a forward modeling approach where we model the probability distribution of optical richness for a given mass, $P(ln lambda| M)$. To model the abundance and the stacked lensing profiles, we use an emulator specifically built to interpolate the halo mass function and the stacked lensing profile for an arbitrary set of halo mass and redshift, which is calibrated based on a suite of high-resolution $N$-body simulations. We apply our method to 8,312 SDSS redMaPPer clusters with $20le lambda le 100$ and $0.10le z_{lambda}le0.33$, and show that the log-normal distribution model for $P(lambda|M)$, with four free parameters, well reproduces the measured abundances and lensing profiles simultaneously. The constraints are characterized by the mean relation, $leftlangle ln{lambda}rightrangle(M)=A+Bln(M/M_{rm pivot})$, with $A=3.207^{+0.044}_{-0.046}$ and $B=0.993^{+0.041}_{-0.055}$ (68%~CL), where the pivot mass scale $M_{rm pivot}=3times 10^{14} h^{-1}M_odot$, and the scatter $sigma_{mathrm{lnlambda}|M}=sigma_0+qln(M/M_{rm pivot})$ with $sigma_0=0.456^{+0.047}_{-0.039}$ and $q=-0.169^{+0.035}_{-0.026}$. We find that a large scatter in halo masses is required at the lowest richness bins ($20le lambda lesssim 30$) in order to reproduce the measurements. Without such a large scatter, the model prediction for the lensing profiles tends to overestimate the measured amplitudes. This might imply a possible contamination of intrinsically low-richness clusters due to the projection effects. Such a low-mass halo contribution is significantly reduced when applying our method to the sample of $30le lambda le 100$.
We present a weak-lensing analysis of X-ray galaxy groups and clusters selected from the XMM-XXL survey using the first-year data from the Hyper Suprime-Cam (HSC) Subaru Strategic Program. Our joint weak-lensing and X-ray analysis focuses on 136 spectroscopically confirmed X-ray-selected systems at 0.031 < z < 1.033 detected in the 25sqdeg XXL-N region. We characterize the mass distributions of individual clusters and establish the concentration-mass (c-M) relation for the XXL sample, by accounting for selection bias and statistical effects, and marginalizing over the remaining mass calibration uncertainty. We find the mass-trend parameter of the c-M relation to be beta = -0.07 pm 0.28 and the normalization to be c200 = 4.8 pm 1.0 (stat) pm 0.8 (syst) at M200=10^{14}Msun/h and z = 0.3. We find no statistical evidence for redshift evolution. Our weak-lensing results are in excellent agreement with dark-matter-only c-M relations calibrated for recent LCDM cosmologies. The level of intrinsic scatter in c200 is constrained as sigma(ln[c200]) < 24% (99.7% CL), which is smaller than predicted for the full population of LCDM halos. This is likely caused in part by the X-ray selection bias in terms of the relaxation state. We determine the temperature-mass (Tx-M500) relation for a subset of 105 XXL clusters that have both measured HSC lensing masses and X-ray temperatures. The resulting Tx-M500 relation is consistent with the self-similar prediction. Our Tx-M500 relation agrees with the XXL DR1 results at group scales, but has a slightly steeper mass trend, implying a smaller mass scale in the cluster regime. The overall offset in the Tx-M500 relation is at the $1.5sigma$ level, corresponding to a mean mass offset of (34pm 20)%. We also provide bias-corrected, weak-lensing-calibrated M200 and M500 mass estimates of individual XXL clusters based on their measured X-ray temperatures.
Recent constraints on the splashback radius around optically selected galaxy clusters from the redMaPPer cluster-finding algorithm in the literature have shown that the observed splashback radius is $sim 20%$ smaller than that predicted by N-body simulations. We present analyses on the splashback features around $sim 3000$ optically selected galaxy clusters detected by the independent cluster-finding algorithm CAMIRA over a wide redshift range of $0.1<z_{rm cl}<1.0$ from the second public data release of the Hyper Suprime-Cam (HSC) Subaru Strategic Program covering $sim 427~{rm deg}^2$ for the cluster catalog. We detect the splashback feature from the projected cross-correlation measurements between the clusters and photometric galaxies over the wide redshift range, including for high redshift clusters at $0.7<z_{rm cl}<1.0$, thanks to deep HSC images. We find that constraints from red galaxy populations only are more precise than those without any color cut, leading to $1sigma$ precisions of $sim 15%$ at $0.4<z_{rm cl}<0.7$ and $0.7<z_{rm cl}<1.0$. These constraints are more consistent with the model predictions ($lesssim 1sigma$) than their $20%$ smaller values as suggested by the previous studies with the redMaPPer ($sim 2sigma$). We also investigate selection effects of the optical cluster-finding algorithms on the observed splashback features by creating mock galaxy catalogs from a halo occupation distribution model, and find that such effects to be sub-dominant for the CAMIRA cluster-finding algorithm. We also find that the redMaPPer-like cluster-finding algorithm induces a smaller inferred splashback radius in our mock catalog, especially at lower richness, which can well explain the smaller splashback radii in the literature. In contrast, these biases are significantly reduced when increasing its aperture size.
We present a statistical weak-lensing magnification analysis on an optically selected sample of 3029 texttt{CAMIRA} galaxy clusters with richness $N>15$ at redshift $0.2leq z <1.1$ in the Subaru Hyper Suprime-Cam (HSC) survey. We use two distinct populations of color-selected, flux-limited background galaxies, namely the low-$z$ and high-$z$ samples at mean redshifts of $approx1.1$ and $approx1.4$, respectively, from which to measure the weak-lensing magnification signal by accounting for cluster contamination as well as masking effects. Our magnification bias measurements are found to be uncontaminated according to validation tests against the null-test samples for which the net magnification bias is expected to vanish. The magnification bias for the full texttt{CAMIRA} sample is detected at a significance level of $9.51sigma$, which is dominated by the high-$z$ background. We forward-model the observed magnification data to constrain the normalization of the richness-to-mass ($N$--$M$) relation for the texttt{CAMIRA} sample with informative priors on other parameters. The resulting scaling relation is $Npropto {M_{500}}^{0.92pm0.13} (1 + z)^{-0.48pm0.69}$, with a characteristic richness of $N=left(17.72pm2.60right)$ and intrinsic log-normal scatter of $0.15pm0.07$ at $M_{500} = 10^{14}h^{-1}M_{odot}$. With the derived $N$--$M$ relation, we provide magnification-calibrated mass estimates of individual texttt{CAMIRA} clusters, with the typical uncertainty of $approx39%$ and $approx32%$ at richness$approx20$ and $approx40$, respectively. We further compare our magnification-inferred $N$--$M$ relation with those from the shear-based results in the literature, finding good agreement.
The COnstrain Dark Energy with X-ray clusters (CODEX) sample contains the largest flux limited sample of X-ray clusters at $0.35 < z < 0.65$. It was selected from ROSAT data in the 10,000 square degrees of overlap with BOSS, mapping a total number of 2770 high-z galaxy clusters. We present here the full results of the CFHT CODEX program on cluster mass measurement, including a reanalysis of CFHTLS Wide data, with 25 individual lensing-constrained cluster masses. We employ $lensfit$ shape measurement and perform a conservative colour-space selection and weighting of background galaxies. Using the combination of shape noise and an analytic covariance for intrinsic variations of cluster profiles at fixed mass due to large scale structure, miscentring, and variations in concentration and ellipticity, we determine the likelihood of the observed shear signal as a function of true mass for each cluster. We combine 25 individual cluster mass likelihoods in a Bayesian hierarchical scheme with the inclusion of optical and X-ray selection functions to derive constraints on the slope $alpha$, normalization $beta$, and scatter $sigma_{ln lambda | mu}$ of our richness-mass scaling relation model in log-space: $left<ln lambda | mu right> = alpha mu + beta$, with $mu = ln (M_{200c}/M_{mathrm{piv}})$, and $M_{mathrm{piv}} = 10^{14.81} M_{odot}$. We find a slope $alpha = 0.49^{+0.20}_{-0.15}$, normalization $ exp(beta) = 84.0^{+9.2}_{-14.8}$ and $sigma_{ln lambda | mu} = 0.17^{+0.13}_{-0.09}$ using CFHT richness estimates. In comparison to other weak lensing richness-mass relations, we find the normalization of the richness statistically agreeing with the normalization of other scaling relations from a broad redshift range ($0.0<z<0.65$) and with different cluster selection (X-ray, Sunyaev-Zeldovich, and optical).