Do you want to publish a course? Click here

The change of variable formula for the Riemann integral

143   0   0.0 ( 0 )
 Added by Alberto Torchinsky
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

This note concerns the general formulation by Preiss and Uher of Kestelmans influential result pertaining the change of variable, or substitution, formula for the Riemann integral.



rate research

Read More

117 - Alberto Torchinsky 2019
We consider general formulations of the change of variable formula for the Riemann-Stieltjes integral, including the case when the substitution is not invertible.
144 - Enrico De Micheli 2020
In this paper, we prove a new integral representation for the Bessel function of the first kind $J_mu(z)$, which holds for any $mu,zinmathbb{C}$.
104 - V.P. Spiridonov 2004
We generalize Warnaars elliptic extension of a Macdonald multiparameter summation formula to Riemann surfaces of arbitrary genus.
We prove Cauchys formula for repeated integration on time scales. The obtained relation gives rise to new notions of fractional integration and differentiation on arbitrary nonempty closed sets.
Several approaches to the formulation of a fractional theory of calculus of variable order have appeared in the literature over the years. Unfortunately, most of these proposals lack a rigorous mathematical framework. We consider an alternative view on the problem, originally proposed by G. Scarpi in the early seventies, based on a naive modification of the representation in the Laplace domain of standard kernels functions involved in (constant-order) fractional calculus. We frame Scarpis ideas within recent theory of General Fractional Derivatives and Integrals, that mostly rely on the Sonine condition, and investigate the main properties of the emerging variable-order operators. Then, taking advantage of powerful and easy-to-use numerical methods for the inversion of Laplace transforms of functions defined in the Laplace domain, we discuss some practical applications of the variable-order Scarpi integral and derivative.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا