Do you want to publish a course? Click here

How to apply multiple imputation in propensity score matching with partially observed confounders: a simulation study and practical recommendations

94   0   0.0 ( 0 )
 Added by Albee Ling
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Propensity score matching (PSM) has been widely used to mitigate confounding in observational studies, although complications arise when the covariates used to estimate the PS are only partially observed. Multiple imputation (MI) is a potential solution for handling missing covariates in the estimation of the PS. Unfortunately, it is not clear how to best apply MI strategies in the context of PSM. We conducted a simulation study to compare the performances of popular non-MI missing data methods and various MI-based strategies under different missing data mechanisms (MDMs). We found that commonly applied missing data methods resulted in biased and inefficient estimates, and we observed large variation in performance across MI-based strategies. Based on our findings, we recommend 1) deriving the PS after applying MI (referred to as MI-derPassive); 2) conducting PSM within each imputed data set followed by averaging the treatment effects to arrive at one summarized finding (INT-within) for mild MDMs and averaging the PSs across multiply imputed datasets before obtaining one treatment effect using PSM (INT-across) for more complex MDMs; 3) a bootstrapped-based variance to account for uncertainty of PS estimation, matching, and imputation; and 4) inclusion of key auxiliary variables in the imputation model.



rate research

Read More

Inverse probability of treatment weighting (IPTW) is a popular propensity score (PS)-based approach to estimate causal effects in observational studies at risk of confounding bias. A major issue when estimating the PS is the presence of partially observed covariates. Multiple imputation (MI) is a natural approach to handle missing data on covariates, but its use in the PS context raises three important questions: (i) should we apply Rubins rules to the IPTW treatment effect estimates or to the PS estimates themselves? (ii) does the outcome have to be included in the imputation model? (iii) how should we estimate the variance of the IPTW estimator after MI? We performed a simulation study focusing on the effect of a binary treatment on a binary outcome with three confounders (two of them partially observed). We used MI with chained equations to create complete datasets and compared three ways of combining the results: combining treatment effect estimates (MIte); combining the PS across the imputed datasets (MIps); or combining the PS parameters and estimating the PS of the average covariates across the imputed datasets (MIpar). We also compared the performance of these methods to complete case (CC) analysis and the missingness pattern (MP) approach, a method which uses a different PS model for each pattern of missingness. We also studied empirically the consistency of these 3 MI estimators. Under a missing at random (MAR) mechanism, CC and MP analyses were biased in most cases when estimating the marginal treatment effect, whereas MI approaches had good performance in reducing bias as long as the outcome was included in the imputation model. However, only MIte was unbiased in all the studied scenarios and Rubins rules provided good variance estimates for MIte.
72 - Wei Li , Chunchen Liu , Zhi Geng 2020
Causal mediation analysis is used to evaluate direct and indirect causal effects of a treatment on an outcome of interest through an intermediate variable or a mediator.It is difficult to identify the direct and indirect causal effects because the mediator cannot be randomly assigned in many real applications. In this article, we consider a causal model including latent confounders between the mediator and the outcome. We present sufficient conditions for identifying the direct and indirect effects and propose an approach for estimating them. The performance of the proposed approach is evaluated by simulation studies. Finally, we apply the approach to a data set of the customer loyalty survey by a telecom company.
143 - Bo Ni , Zhichun Guo , Jianing Li 2020
Recently, due to the booming influence of online social networks, detecting fake news is drawing significant attention from both academic communities and general public. In this paper, we consider the existence of confounding variables in the features of fake news and use Propensity Score Matching (PSM) to select generalizable features in order to reduce the effects of the confounding variables. Experimental results show that the generalizability of fake news method is significantly better by using PSM than using raw frequency to select features. We investigate multiple types of fake news methods (classifiers) such as logistic regression, random forests, and support vector machines. We have consistent observations of performance improvement.
Selective inference (post-selection inference) is a methodology that has attracted much attention in recent years in the fields of statistics and machine learning. Naive inference based on data that are also used for model selection tends to show an overestimation, and so the selective inference conditions the event that the model was selected. In this paper, we develop selective inference in propensity score analysis with a semiparametric approach, which has become a standard tool in causal inference. Specifically, for the most basic causal inference model in which the causal effect can be written as a linear sum of confounding variables, we conduct Lasso-type variable selection by adding an $ell_1$ penalty term to the loss function that gives a semiparametric estimator. Confidence intervals are then given for the coefficients of the selected confounding variables, conditional on the event of variable selection, with asymptotic guarantees. An important property of this method is that it does not require modeling of nonparametric regression functions for the outcome variables, as is usually the case with semiparametric propensity score analysis.
Score matching is a popular method for estimating unnormalized statistical models. However, it has been so far limited to simple, shallow models or low-dimensional data, due to the difficulty of computing the Hessian of log-density functions. We show this difficulty can be mitigated by projecting the scores onto random vectors before comparing them. This objective, called sliced score matching, only involves Hessian-vector products, which can be easily implemented using reverse-mode automatic differentiation. Therefore, sliced score matching is amenable to more complex models and higher dimensional data compared to score matching. Theoretically, we prove the consistency and asymptotic normality of sliced score matching estimators. Moreover, we demonstrate that sliced score matching can be used to learn deep score estimators for implicit distributions. In our experiments, we show sliced score matching can learn deep energy-based models effectively, and can produce accurate score estimates for applications such as variational inference with implicit distributions and training Wasserstein Auto-Encoders.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا