Do you want to publish a course? Click here

Inferring AGN jet parameters using Bayesian analysis of VLBI data with non-uniform jet model

169   0   0.0 ( 0 )
 Added by Ilya Pashchenko N
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Physical parameters of AGN jets observed with Very Long Baseline Interferometry (VLBI) are usually inferred from the core shift measurements or flux and size measured at a peak frequency of the synchrotron spectrum. Both are preceded by modelling of the observed VLBI jet structure with a simple Gaussian templates. We propose to infer the jets parameters using the inhomogeneous jet model directly - bypassing the modelling of the source structure with a Gaussian templates or image deconvolution. We applied Bayesian analysis to multi-frequency VLBA observations of radio galaxy NGC 315 and found that its parsec-scale jet is well described by the inhomogeneous conical model. Our results favour electron-positron jet. We also detected a component in a counter jet. Its position implies the presence of an external absorber with a steep density gradient at close ($r=0.1$ pc) distance from the central engine.



rate research

Read More

We analyze differences in positions of active galactic nuclei between Gaia data release 2 and VLBI and compare the significant VLBI-to-Gaia offsets in more than 1000 objects with their jet directions. Remarkably at least 3/4 of the significant offsets are confirmed to occur downstream or upstream the jet representing a genuine astrophysical effect. Introducing redshift and Gaia color into analysis can help distinguish between the contribution of the host galaxy, jet, and accretion disk emission. We find that strong optical jet emission at least 20-50pc long is required to explain the Gaia positions located downstream from VLBI ones. Offsets in the upstream direction of up to 2 mas are at least partly due to the dominant impact of the accretion disk on the Gaia coordinates and by the effects of parsec-scale radio jet. The host galaxy was found not to play an important role in the detected offsets. BL Lacertae object and Seyfert 2 galaxies are observationally confirmed to have a relatively weak disk and consequently downstream offsets. The disk emission drives upstream offsets in a significant fraction of quasars and Seyfert 1 galaxies when it dominates over the jet in the optical band. The observed behaviour of the different AGN classes is consistent with the unified scheme assuming varying contribution of the obscuring dusty torus and jet beaming.
Various radio galaxies show signs of having gone through episodic jet outbursts in the past. An example is the class of double-double radio galaxies (DDRGs). However, to follow the evolution of an individual source in real-time is impossible due to the large time scales involved. Numerical studies provide a powerful tool to investigate the temporal behavior of episodic jet outbursts in a (magneto-)hydrodynamical setting. We simulate the injection of two jets from active galactic nuclei (AGN), separated by a short interruption time. Three different jet models are compared. We find that an AGN jet outburst cycle can be divided into four phases. The most prominent phase occurs when the restarted jet is propagating completely inside the hot and inflated cocoon left behind by the initial jet. In that case, the jet-head advance speed of the restarted jet is significantly higher than the initial jet-head. While the head of the initial jet interacts strongly with the ambient medium, the restarted jet propagates almost unimpeded. As a result, the restarted jet maintains a strong radial integrity. Just a very small fraction of the amount of shocked jet material flows back through the cocoon compared to that of the initial jet and much weaker shocks are found at the head of the restarted jet. We find that the features of the restarted jet in this phase closely resemble the observed properties of a typical DDRG.
Jets are a commonly observed phenomenon in post-asymptotic giant branch (post-AGB) binaries. Due to the orbital motion of the binary, the jet causes variable absorption in the Balmer profiles. In previous work, we have developed spatio-kinematic and radiative transfer models to reproduce the observed Balmer line variability and derive the spatio-kinematic structure of the jet and its mass-loss rate. Here, we apply our jet model to five post-AGB binaries with distinct H{alpha} line variability and diverse orbital properties. Our models fit the H{alpha} line variations very well. We estimate jet mass-loss rates between 10-8 Mdot yr-1 and 10-4 Mdot yr-1 , from which we deduce accretion rates onto the companion between 10-7 Mdot yr-1 and 10-3 Mdot yr-1 . These accretion rates are somewhat higher than can be comfortably explained with reasonable sources of accretion, but we argue that the circumbinary disc in these systems is most-likely the source feeding the accretion, although accretion from the post-AGB star cannot be ruled out. The diversity of the variability in the five objects is due to their wide ejection cones combined with a range of viewing angles, rather than inherent differences between the objects. The nature of the observations does not let us easily distinguish which jet launching model (stellar jet, disc wind, or X-wind) should be favoured. In conclusion, we show that our jet model includes the physical parameters to successfully reproduce the H{alpha} line variations and retrieve the structure and mass-loss rates of the jet for all five objects that are representative of the diverse sample of Galactic post-AGB binaries.
Detailed studies of relativistic jets in active galactic nuclei (AGN) require high-fidelity imaging at the highest possible resolution. This can be achieved using very long baseline interferometry (VLBI) at radio frequencies, combining worldwide (global) VLBI arrays of radio telescopes with a space-borne antenna on board a satellite. We present multiwavelength images made of the radio emission in the powerful quasar S5 0836+710, obtained using a global VLBI array and the antenna Spektr-R of the RadioAstron mission of the Russian Space Agency, with the goal of studying the internal structure and physics of the relativistic jet in this object. The RadioAstron observations at wavelengths of 18cm, 6cm, and 1.3cm are part of the Key Science Program for imaging radio emission in strong AGN. The internal structure of the jet is studied by analyzing transverse intensity profiles and modeling the structural patterns developing in the flow. The RadioAstron images reveal a wealth of structural detail in the jet of S5 0836+710 on angular scales ranging from 0.02mas to 200mas. Brightness temperatures in excess of $10^{13}$,K are measured in the jet, requiring Doppler factors of $ge 100$ for reconciling them with the inverse Compton limit. Several oscillatory patterns are identified in the ridge line of the jet and can be explained in terms of the Kelvin-Helmholtz (KH) instability. The oscillatory patterns are interpreted as the surface and body wavelengths of the helical mode of the KH instability. The interpretation provides estimates of the jet Mach number and of the ratio of the jet to the ambient density, which are found to be $M_mathrm{j}approx 12$ and $etaapprox 0.33$. The ratio of the jet to the ambient density should be conservatively considered an upper limit because its estimate relies on approximations.
185 - Y.Y. Kovalev 2016
The data release 1 (DR1) of milliarcsecond-scale accurate optical positions of stars and galaxies was recently published by the space mission Gaia. We study the offsets of highly accurate absolute radio (very long baseline interferometry, VLBI) and optical positions of active galactic nuclei (AGN) to see whether or not a signature of wavelength-dependent parsec-scale structure can be seen. We analyzed VLBI and Gaia positions and determined the direction of jets in 2957 AGNs from their VLBI images. We find that there is a statistically significant excess of sources with VLBI-to-Gaia position offset in directions along and opposite to the jet. Offsets along the jet vary from zero to tens of mas. Offsets in the opposite direction do not exceed 3 mas. The presense of strong, extended parsec-scale optical jet structures in many AGNs is required to explain all observed VLBI-Gaia offsets along the jet direction. The offsets in the opposite direction shorter than 1 mas can be explained either by a non-point-like VLBI jet structure or a core-shift effect due to synchrotron opacity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا