Taking Linear Logic Apart


Abstract in English

Process calculi based on logic, such as $pi$DILL and CP, provide a foundation for deadlock-free concurrent programming. However, in previous work, there is a mismatch between the rules for constructing proofs and the term constructors of the $pi$-calculus: the fundamental operator for parallel composition does not correspond to any rule of linear logic. Kokke et al. (2019) introduced Hypersequent Classical Processes (HCP), which addresses this mismatch using hypersequents (collections of sequents) to register parallelism in the typing judgements. However, the step from CP to HCP is a big one. As of yet, HCP does not have reduction semantics, and the addition of delayed actions means that CP processes interpreted as HCP processes do not behave as they would in CP. We introduce HCP-, a variant of HCP with reduction semantics and without delayed actions. We prove progress, preservation, and termination, and show that HCP- supports the same communication protocols as CP.

Download