Do you want to publish a course? Click here

Defect energetics of cubic hafnia from quantum Monte Carlo simulations

82   0   0.0 ( 0 )
 Added by Olle Heinonen
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cubic hafnia (HfO$_2$) is of great interest for a number of applications in electronics because of its high dielectric constant. However, common defects in such applications degrade the properties of hafina. We have investigated the electronic properties of oxygen vacancies and nitrogen substitution in cubic HfO$_2$ using first principles calculations based on density functional theory (DFT) and many-body diffusion Monte Carlo (DMC) methods. We investigate five different charge defect states of oxygen vacancies, as well as substitutional N defects which can lead to local magnetic moments. Both DMC and DFT calculations shows that an oxygen vacancy induces strong lattice relaxations around the defect. Finally, we compare defect formation energies, charge and spin densities obtained from DMC with results obtained using DFT. While the obtained formation energies from DMC are 0.6~eV -- 1.5~eV larger than those from GGA+U, the agreement for the most important defects, neutral and positively charged oxygen vacancies, and nitrogen substitutional defect, under oxygen-poor conditions are in reasonably good agreement. Our work confirms that nitrogen can act to passivate cubic hafnia for applications in electronics.



rate research

Read More

We have applied the many-body ab-initio diffusion quantum Monte Carlo (DMC) method to study Zn and ZnO crystals under pressure, and the energetics of the oxygen vacancy, zinc interstitial and hydrogen impurities in ZnO. We show that DMC is an accurate and practical method that can be used to characterize multiple properties of materials that are challenging for density functional theory approximations. DMC agrees with experimental measurements to within 0.3 eV, including the band-gap of ZnO, the ionization potential of O and Zn, and the atomization energy of O$_2$, ZnO dimer, and wurtzite ZnO. DMC predicts the oxygen vacancy as a deep donor with a formation energy of 5.0(2) eV under O-rich conditions and thermodynamic transition levels located between 1.8 and 2.5 eV from the valence band maximum. Our DMC results indicate that the concentration of zinc interstitial and hydrogen impurities in ZnO should be low under n-type, and Zn- and H-rich conditions because these defects have formation energies above 1.4 eV under these conditions. Comparison of DMC and hybrid functionals shows that these DFT approximations can be parameterized to yield a general correct qualitative description of ZnO. However, the formation energy of defects in ZnO evaluated with DMC and hybrid functionals can differ by more than 0.5 eV.
Zirconia (zirconium dioxide) and hafnia (hafnium dioxide) are binary oxides used in a range of applications. Because zirconium and hafnium are chemically equivalent, they have three similar polymorphs, and it is important to understand the properties and energetics of these polymorphs. However, while density functional theory calculations can get the correct energetic ordering, the energy differences between polymorphs depend very much on the specific density functional theory approach, as do other quantities such as lattice constants and bulk modulus. We have used highly accurate quantum Monte Carlo simulations to model the three zirconia and hafnia polymorphs. We compare our results for structural parameters, bulk modulus, and cohesive energy with results obtained from density functional theory calculations. We also discuss comparisons of our results with existing experimental data, in particular for structural parameters where extrapolation to zero temperature can be attempted. We hope our results of structural parameters as well as for cohesive energy and bulk modulus can serve as benchmarks for density-functional theory based calculations and as a guidance for future experiments.
121 - D. Alfe` , M. J. Gillan 2006
Density functional theory (DFT) is widely used in surface science, but gives poor accuracy for oxide surface processes, while high-level quantum chemistry methods are hard to apply without losing basis-set quality. We argue that quantum Monte Carlo techniques allow these difficulties to be overcome, and we present diffusion Monte Carlo results for the formation energy of the MgO(001) surface and the adsorption energy of H$_2$O on this surface, using periodic slab geometry. The results agree well with experiment. We note other oxide surface problems where these techniques could yield immediate progress.
We show how accurate benchmark values of the surface formation energy of crystalline lithium hydride can be computed by the complementary techniques of quantum Monte Carlo (QMC) and wavefunction-based molecular quantum chemistry. To demonstrate the high accuracy of the QMC techniques, we present a detailed study of the energetics of the bulk LiH crystal, using both pseudopotential and all-electron approaches. We show that the equilibrium lattice parameter agrees with experiment to within 0.03 %, which is around the experimental uncertainty, and the cohesive energy agrees to within around 10 meV per formula unit. QMC in periodic slab geometry is used to compute the formation energy of the LiH (001) surface, and we show that the value can be accurately converged with respect to slab thickness and other technical parameters. The quantum chemistry calculations build on the recently developed hierarchical scheme for computing the correlation energy of a crystal to high precision. We show that the hierarchical scheme allows the accurate calculation of the surface formation energy, and we present results that are well converged with respect to basis set and with respect to the level of correlation treatment. The QMC and hierarchical results for the surface formation energy agree to within about 1 %.
We present a detailed study of the energetics of water clusters (H$_2$O)$_n$ with $n le 6$, comparing diffusion Monte Carlo (DMC) and approximate density functional theory (DFT) with well converged coupled-cluster benchmarks. We use the many-body decomposition of the total energy to classify the errors of DMC and DFT into 1-body, 2-body and beyond-2-body components. Using both equilibrium cluster configurations and thermal ensembles of configurations, we find DMC to be uniformly much more accurate than DFT, partly because some of the approximate functionals give poor 1-body distortion energies. Even when these are corrected, DFT remains considerably less accurate than DMC. When both 1- and 2-body errors of DFT are corrected, some functionals compete in accuracy with DMC; however, other functionals remain worse, showing that they suffer from significant beyond-2-body errors. Combining the evidence presented here with the recently demonstrated high accuracy of DMC for ice structures, we suggest how DMC can now be used to provide benchmarks for larger clusters and for bulk liquid water.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا