Do you want to publish a course? Click here

Superconductivity from piezoelectric interactions in Weyl semimetals

278   0   0.0 ( 0 )
 Added by Francesco Buccheri
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an analytical low-energy theory of piezoelectric electron-phonon interactions in undoped Weyl semimetals, taking into account also Coulomb interactions. We show that piezoelectric interactions generate a long-range attractive potential between Weyl fermions. This potential comes with a characteristic angular anisotropy. From the one-loop renormalization group approach and a mean-field analysis, we predict that superconducting phases with either conventional s-wave singlet pairing or nodal-line triplet pairing could be realized for sufficiently strong piezoelectric coupling. For small couplings, we show that the quasi-particle decay rate exhibits a linear temperature dependence where the prefactor vanishes only in a logarithmic manner as the quasi-particle energy approaches the Weyl point. For practical estimates, we consider the Weyl semimetal TaAs.



rate research

Read More

There is considerable current interest to explore electronic topology in strongly correlated metals, with heavy fermion systems providing a promising setting. Recently, a Weyl-Kondo semimetal phase has been concurrently discovered in theoretical and experimental studies. The theoretical work was carried out in a Kondo lattice model that is time-reversal invariant but inversion-symmetry breaking. In this paper, we show in some detail how nonsymmorphic space-group symmetry and strong correlations cooperate to form Weyl nodal excitations with highly reduced velocity and pin the resulting Weyl nodes to the Fermi energy. A tilted variation of the Weyl-Kondo solution is further analyzed here, following the recent consideration of such effect in the context of understanding a large spontaneous Hall effect in Ce$_3$Bi$_4$Pd$_3$ (Dzsaber et al., arXiv:1811.02819). We discuss the implications of our results for the enrichment of the global phase diagram of heavy fermion metals, and for the space-group symmetry enforcement of topological semimetals in other strongly correlated settings.
The surface of a Weyl semimetal famously hosts an exotic topological metal that contains open Fermi arcs rather than closed Fermi surfaces. In this work, we show that the surface is also endowed with a feature normally associated with strongly interacting systems, namely, Luttinger arcs, defined as zeros of the electron Greens function. The Luttinger arcs connect surface projections of Weyl nodes of opposite chirality and form closed loops with the Fermi arcs when the Weyl nodes are undoped. Upon doping, the ends of the Fermi and Luttinger arcs separate and the intervening regions get filled by surface projections of bulk Fermi surfaces. For bilayered Weyl semimetals, we prove two remarkable implications: (i) the precise shape of the Luttinger arcs can be determined experimentally by removing a surface layer. We use this principle to sketch the Luttinger arcs for Co and Sn terminations in Co$_{3}$Sn$_{2}$S$_{2}$; (ii) the area enclosed by the Fermi and Luttinger arcs equals the surface particle density to zeroth order in the interlayer couplings. We argue that the approximate equivalence survives interactions that are weak enough to leave the system in the Weyl limit, and term this phenomenon weak Luttingers theorem.
Energy transfer from electrons to phonons is an important consideration in any Weyl or Dirac semimetal based application. In this work, we analytically calculate the cooling power of acoustic phonons, i.e. the energy relaxation rate of electrons which are interacting with acoustic phonons, for Weyl and Dirac semimetals in a variety of different situations. For cold Weyl or Dirac semimetals with the Fermi energy at the nodal points, we find the electronic temperature, $T_e$, decays in time as a power law. In the heavily doped regime, $T_e$ decays linearly in time far away from equilibrium. In a heavily doped system with short-range disorder we predict the cooling power of acoustic phonons is drastically increased because of an enhanced energy transfer between electrons and phonons. When an external magnetic field is applied to an undoped system, the cooling power is linear in magnetic field strength and $T_e$ has square root decay in time, independent of magnetic field strength over a range of values.
The search for a material platform for topological quantum computation has recently focused on unconventional superconductors. Such material systems, where the superconducting order parameter breaks a symmetry of the crystal point group, are capable of hosting novel phenomena, including emergent Majorana quasiparticles. Unique among unconventional superconductors is the recently discovered UTe2, where spin-triplet superconductivity emerges from a paramagnetic normal state. Although UTe2 could be considered a relative of a family of known ferromagnetic superconductors, the unique crystal structure of this material and experimentally suggested zero Curie temperature pose a great challenge to determining the symmetries, magnetism, and topology underlying the superconducting state. These emergent properties will determine the utility of UTe2 for future spintronics and quantum information applications. Here, we report observations of a non-zero polar Kerr effect and of two transitions in the specific heat upon entering the superconducting state, which together show that the superconductivity in UTe2 is characterized by an order parameter with two components that breaks time reversal symmetry. These data allow us to place firm constraints on the symmetries of the order parameter, which strongly suggest that UTe2 is a Weyl superconductor that hosts chiral Fermi arc surface states.
We report on a study of intrinsic superconductivity in a Weyl metal, i.e. a doped Weyl semimetal. Two distinct superconducting states are possible in this system in principle: a zero-momentum pairing BCS state, with point nodes in the gap function; and a finite-momentum FFLO-like state, with a full nodeless gap. We find that, in an inversion-symmetric Weyl metal the odd-parity BCS state has a lower energy than the FFLO state, despite the nodes in the gap. The FFLO state, on the other hand, may have a lower energy in a noncentrosymmetric Weyl metal, in which Weyl nodes of opposite chirality have different energy. However, realizing the FFLO state is in general very difficult since the paired states are not related by any exact symmetry, which precludes a weak-coupling superconducting instability. We also discuss some of the physical properties of the nodal BCS state, in particular Majorana and Fermi arc surface states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا