Do you want to publish a course? Click here

Direct measurement of stellar angular diameters by the VERITAS Cherenkov Telescopes

76   0   0.0 ( 0 )
 Added by Tarek Hassan
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The angular size of a star is a critical factor in determining its basic properties. Direct measurement of stellar angular diameters is difficult: at interstellar distances stars are generally too small to resolve by any individual imaging telescope. This fundamental limitation can be overcome by studying the diffraction pattern in the shadow cast when an asteroid occults a star, but only when the photometric uncertainty is smaller than the noise added by atmospheric scintillation. Atmospheric Cherenkov telescopes used for particle astrophysics observations have not generally been exploited for optical astronomy due to the modest optical quality of the mirror surface. However, their large mirror area makes them well suited for such high-time-resolution precision photometry measurements. Here we report two occultations of stars observed by the VERITAS Cherenkov telescopes with millisecond sampling, from which we are able to provide a direct measurement of the occulted stars angular diameter at the $leq0.1$ milliarcsecond scale. This is a resolution never achieved before with optical measurements and represents an order of magnitude improvement over the equivalent lunar occultation method. We compare the resulting stellar radius with empirically derived estimates from temperature and brightness measurements, confirming the latter can be biased for stars with ambiguous stellar classifications.



rate research

Read More

The VERITAS Imaging Air Cherenkov Telescope (IACT) array was augmented in 2019 with high-speed focal plane electronics to allow its use for Stellar Intensity Interferometry (SII) observations. Since January 2019, the VERITAS Stellar Interferometer (VSII) recorded more than 250 hours of moonlit observations on 39 different bright stars and binary systems ($m_V < 3.74$) at an effective optical wavelength of 416 nm. These observations resulted in the measurement of the diameters of several stars with better than 5% resolution. This talk will describe the status of the VSII survey and analysis.
We present the Mid-infrared stellar Diameters and Fluxes compilation Catalogue (MDFC) dedicated to long-baseline interferometry at mid-infrared wavelengths (3-13 mum). It gathers data for half a million stars, i.e. nearly all the stars of the Hipparcos-Tycho catalogue whose spectral type is reported in the SIMBAD database. We cross-match 26 databases to provide basic information, binarity elements, angular diameter, magnitude and flux in the near and mid-infrared, as well as flags that allow us to identify the potential calibrators. The catalogue covers the entire sky with 465 857 stars, mainly dwarfs and giants from B to M spectral types closer than 18 kpc. The smallest reported values reach 0.16 muJy in L and 0.1 muJy in N for the flux, and 2 microarcsec for the angular diameter. We build 4 lists of calibrator candidates for the L- and N-bands suitable with the Very Large Telescope Interferometer (VLTI) sub- and main arrays using the MATISSE instrument. We identify 1 621 candidates for L and 44 candidates for N with the Auxiliary Telescopes (ATs), 375 candidates for both bands with the ATs, and 259 candidates for both bands with the Unit Telescopes (UTs). Predominantly cool giants, these sources are small and bright enough to belong to the primary lists of calibrator candidates. In the near future, we plan to measure their angular diameter with 1% accuracy.
High angular resolution observations at optical wavelengths provide valuable insights in stellar astrophysics, directly measuring fundamental stellar parameters, and probing stellar atmospheres, circumstellar disks, elongation of rapidly rotating stars, and pulsations of Cepheid variable stars. The angular size of most stars are of order one milli-arcsecond or less, and to spatially resolve stellar disks and features at this scale requires an optical interferometer using an array of telescopes with baselines on the order of hundreds of meters. We report on the successful implementation of a stellar intensity interferometry system developed for the four VERITAS imaging atmospheric-Cherenkov telescopes. The system was used to measure the angular diameter of the two sub-mas stars $beta$ Canis Majoris and $epsilon$ Orionis with a precision better than 5%. The system utilizes an off-line approach where starlight intensity fluctuations recorded at each telescope are correlated post-observation. The technique can be readily scaled onto tens to hundreds of telescopes, providing a capability that has proven technically challenging to current generation optical amplitude interferometry observatories. This work demonstrates the feasibility of performing astrophysical measurements with imaging atmospheric-Cherenkov telescope arrays as intensity interferometers and the promise for integrating an intensity interferometry system within future observatories such as the Cherenkov Telescope Array.
238 - G.Maier 2007
VERITAS is a system of four imaging Cherenkov telescopes located at the Fred Lawrence Whipple Observatory in southern Arizona. We present here results of detailed Monte Carlo simulations of the array response to extensive air showers. Cherenkov image and shower parameter distributions are calculated and show good agreement with distributions obtained from observations of background cosmic rays and high-energy gamma-rays. Cosmic-ray and gamma-ray rates are accurately predicted by the simulations. The energy threshold of the 3-telescope system is about 150 GeV after gamma-hadron separation cuts; the detection rate after gamma-selection cuts for the Crab Nebula is 7.5 gammas/min. The three-telescope system is able to detect a source with a flux equivalent to 10% of the Crab Nebula flux in 1.2 h of observations (5 sigma detection).
114 - M. L. Ahnen , D. Baack , M. Balbo 2016
Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures and high image intensities to map the faint Cherenkov light emitted from cosmic ray air showers onto their image sensors. Segmented reflectors fulfill these needs, and composed from mass production mirror facets they are inexpensive and lightweight. However, as the overall image is a superposition of the individual facet images, alignment remains a challenge. Here we present a simple, yet extendable method, to align a segmented reflector using its Bokeh. Bokeh alignment does not need a star or good weather nights but can be done even during daytime. Bokeh alignment optimizes the facet orientations by comparing the segmented reflectors Bokeh to a predefined template. The optimal Bokeh template is highly constricted by the reflectors aperture and is easy accessible. The Bokeh is observed using the out of focus image of a near by point like light source in a distance of about 10 focal lengths. We introduce Bokeh alignment on segmented reflectors and demonstrate it on the First Geiger-mode Avalanche Cherenkov Telescope (FACT) on La Palma, Spain.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا