No Arabic abstract
In the book The Essential Tension Thomas Kuhn described the conflict between tradition and innovation in scientific research --i.e., the desire to explore new promising areas, counterposed to the need to capitalize on the work done in the past. While it is true that along their careers many scientists probably felt this tension, only few works have tried to quantify it. Here, we address this question by analyzing a large-scale dataset, containing all the papers published by the American Physical Society (APS) in more than $25$ years, which allows for a better understanding of scientists careers evolution in Physics. We employ the Physics and Astronomy Classification Scheme (PACS) present in each paper to map the scientific interests of $181,397$ authors and their evolution along the years. Our results indeed confirm the existence of the `essential tension with scientists balancing between exploring the boundaries of their area and exploiting previous work. In particular, we found that although the majority of physicists change the topics of their research, they stay within the same broader area thus exploring with caution new scientific endeavors. Furthermore, we quantify the flows of authors moving between different subfields and pinpoint which areas are more likely to attract or donate researchers to the other ones. Overall, our results depict a very distinctive portrait of the evolution of research interests in Physics and can help in designing specific policies for the future.
Despite the apparent cross-disciplinary interactions among scientific fields, a formal description of their evolution is lacking. Here we describe a novel approach to study the dynamics and evolution of scientific fields using a network-based analysis. We build an idea network consisting of American Physical Society Physics and Astronomy Classification Scheme (PACS) numbers as nodes representing scientific concepts. Two PACS numbers are linked if there exist publications that reference them simultaneously. We locate scientific fields using a community finding algorithm, and describe the time evolution of these fields over the course of 1985-2006. The communities we identify map to known scientific fields, and their age depends on their size and activity. We expect our approach to quantifying the evolution of ideas to be relevant for making predictions about the future of science and thus help to guide its development.
We stress-test the career predictability model proposed by Acuna et al. [Nature 489, 201-202 2012] by applying their model to a longitudinal career data set of 100 Assistant professors in physics, two from each of the top 50 physics departments in the US. The Acuna model claims to predict h(t+Delta t), a scientists h-index Delta t years into the future, using a linear combination of 5 cumulative career measures taken at career age t. Here we investigate how the predictability depends on the aggregation of career data across multiple age cohorts. We confirm that the Acuna model does a respectable job of predicting h(t+Delta t) up to roughly 6 years into the future when aggregating all age cohorts together. However, when calculated using subsets of specific age cohorts (e.g. using data for only t=3), we find that the models predictive power significantly decreases, especially when applied to early career years. For young careers, the model does a much worse job of predicting future impact, and hence, exposes a serious limitation. The limitation is particularly concerning as early career decisions make up a significant portion, if not the majority, of cases where quantitative approaches are likely to be applied.
The broad coverage of the search for the Higgs boson in the mainstream media is a relative novelty for high energy physics (HEP) research, whose achievements have traditionally been limited to scholarly literature. This paper illustrates the results of a scientometric analysis of HEP computing in scientific literature, institutional media and the press, and a comparative overview of similar metrics concerning representative particle physics measurements. The picture emerging from these scientometric data documents the scientific impact and social perception of HEP computing. The results of this analysis suggest that improved communication of the scientific and social role of HEP computing would be beneficial to the high energy physics community.
Even as we advance the frontiers of physics knowledge, our understanding of how this knowledge evolves remains at the descriptive levels of Popper and Kuhn. Using the APS publications data sets, we ask in this letter how new knowledge is built upon old knowledge. We do so by constructing year-to-year bibliographic coupling networks, and identify in them validated communities that represent different research fields. We then visualize their evolutionary relationships in the form of alluvial diagrams, and show how they remain intact through APS journal splits. Quantitatively, we see that most fields undergo weak Popperian mixing, and it is rare for a field to remain isolated/undergo strong mixing. The sizes of fields obey a simple linear growth with recombination. We can also reliably predict the merging between two fields, but not for the considerably more complex splitting. Finally, we report a case study of two fields that underwent repeated merging and splitting around 1995, and how these Kuhnian events are correlated with breakthroughs on BEC, quantum teleportation, and slow light. This impact showed up quantitatively in the citations of the BEC field as a larger proportion of references from during and shortly after these events.
John Desmond Bernal (1901-1970) was one of the most eminent scientists in molecular biology, and also regarded as the founding father of the Science of Science. His book The Social Function of Science laid the theoretical foundations for the discipline. In this article, we summarize four chief characteristics of his ideas in the Science of Science: the socio-historical perspective, theoretical models, qualitative and quantitative approaches, and studies of science planning and policy. China has constantly reformed its scientific and technological system based on research evidence of the Science of Science. Therefore, we analyze the impact of Bernal Science-of-Science thoughts on the development of Science of Science in China, and discuss how they might be usefully taken still further in quantitative studies of science.