A two-variable series for knot complements


Abstract in English

The physical 3d $mathcal{N}=2$ theory T[Y] was previously used to predict the existence of some 3-manifold invariants $hat{Z}_{a}(q)$ that take the form of power series with integer coefficients, converging in the unit disk. Their radial limits at the roots of unity should recover the Witten-Reshetikhin-Turaev invariants. In this paper we discuss how, for complements of knots in $S^3$, the analogue of the invariants $hat{Z}_{a}(q)$ should be a two-variable series $F_K(x,q)$ obtained by parametric resurgence from the asymptotic expansion of the colored Jones polynomial. The terms in this series should satisfy a recurrence given by the quantum A-polynomial. Furthermore, there is a formula that relates $F_K(x,q)$ to the invariants $hat{Z}_{a}(q)$ for Dehn surgeries on the knot. We provide explicit calculations of $F_K(x,q)$ in the case of knots given by negative definite plumbings with an unframed vertex, such as torus knots. We also find numerically the first terms in the series for the figure-eight knot, up to any desired order, and use this to understand $hat{Z}_a(q)$ for some hyperbolic 3-manifolds.

Download