Do you want to publish a course? Click here

Mean-field limits for interacting diffusions with colored noise: phase transitions and spectral numerical methods

168   0   0.0 ( 0 )
 Added by Urbain Vaes
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we consider systems of weakly interacting particles driven by colored noise in a bistable potential, and we study the effect of the correlation time of the noise on the bifurcation diagram for the equilibrium states. We accomplish this by solving the corresponding McKean-Vlasov equation using a Hermite spectral method, and we verify our findings using Monte Carlo simulations of the particle system. We consider both Gaussian and non-Gaussian noise processes, and for each model of the noise we also study the behavior of the system in the small correlation time regime using perturbation theory. The spectral method that we develop in this paper can be used for solving linear and nonlinear, local and nonlocal (mean-field) Fokker-Planck equations, without requiring that they have a gradient structure.



rate research

Read More

In this paper we study the combined mean field and homogenization limits for a system of weakly interacting diffusions moving in a two-scale, locally periodic confining potential, of the form considered in~cite{DuncanPavliotis2016}. We show that, although the mean field and homogenization limits commute for finite times, they do not, in general, commute in the long time limit. In particular, the bifurcation diagrams for the stationary states can be different depending on the order with which we take the two limits. Furthermore, we construct the bifurcation diagram for the stationary McKean-Vlasov equation in a two-scale potential, before passing to the homogenization limit, and we analyze the effect of the multiple local minima in the confining potential on the number and the stability of stationary solutions.
In this paper, we study the mean field limit of interacting particles with memory that are governed by a system of interacting non-Markovian Langevin equations. Under the assumption of quasi-Markovianity (i.e. that the memory in the system can be described using a finite number of auxiliary processes), we pass to the mean field limit to obtain the corresponding McKean-Vlasov equation in an extended phase space. We obtain the fundamental solution (Greens function) for this equation, for the case of a quadratic confining potential and a quadratic (Curie-Weiss) interaction. Furthermore, for nonconvex confining potentials we characterize the stationary state(s) of the McKean-Vlasov equation, and we show that the bifurcation diagram of the stationary problem is independent of the memory in the system. In addition, we show that the McKean-Vlasov equation for the non-Markovian dynamics can be written in the GENERIC formalism and we study convergence to equilibrium and the Markovian asymptotic limit.
Sticky Brownian motion is the simplest example of a diffusion process that can spend finite time both in the interior of a domain and on its boundary. It arises in various applications such as in biology, materials science, and finance. This article spotlights the unusual behavior of sticky Brownian motions from the perspective of applied mathematics, and provides tools to efficiently simulate them. We show that a sticky Brownian motion arises naturally for a particle diffusing on $mathbb{R}_+$ with a strong, short-ranged potential energy near the origin. This is a limit that accurately models mesoscale particles, those with diameters $approx 100$nm-$10mu$m, which form the building blocks for many common materials. We introduce a simple and intuitive sticky random walk to simulate sticky Brownian motion, that also gives insight into its unusual properties. In parameter regimes of practical interest, we show this sticky random walk is two to five orders of magnitude faster than alternative methods to simulate a sticky Brownian motion. We outline possible steps to extend this method towards simulating multi-dimensional sticky diffusions.
332 - Eliyahu Osherovich 2012
In this work we consider the problem of reconstruction of a signal from the magnitude of its Fourier transform, also known as phase retrieval. The problem arises in many areas of astronomy, crystallography, optics, and coherent diffraction imaging (CDI). Our main goal is to develop an efficient reconstruction method based on continuous optimization techniques. Unlike current reconstruction methods, which are based on alternating projections, our approach leads to a much faster and more robust method. However, all previous attempts to employ continuous optimization methods, such as Newton-type algorithms, to the phase retrieval problem failed. In this work we provide an explanation for this failure, and based on this explanation we devise a sufficient condition that allows development of new reconstruction methods---approximately known Fourier phase. We demonstrate that a rough (up to $pi/2$ radians) Fourier phase estimate practically guarantees successful reconstruction by any reasonable method. We also present a new reconstruction method whose reconstruction time is orders of magnitude faster than that of the current method-of-choice in phase retrieval---Hybrid Input-Output (HIO). Moreover, our method is capable of successful reconstruction even in the situations where HIO is known to fail. We also extended our method to other applications: Fourier domain holography, and interferometry. Additionally we developed a new sparsity-based method for sub-wavelength CDI. Using this method we demonstrated experimental resolution exceeding several times the physical limit imposed by the diffraction light properties (so called diffraction limit).
By the Wolffs cluster Monte Carlo simulations and numerical minimization within a mean field approach, we study the low temperature phase diagram of water, adopting a cell model that reproduces the known properties of water in its fluid phases. Both methods allows us to study the water thermodynamic behavior at temperatures where other numerical approaches --both Monte Carlo and molecular dynamics-- are seriously hampered by the large increase of the correlation times. The cluster algorithm also allows us to emphasize that the liquid--liquid phase transition corresponds to the percolation transition of tetrahedrally ordered water molecules.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا