No Arabic abstract
The CUORE experiment is the worlds largest bolometric experiment. The detector consists of an array of 988 TeO2 crystals, for a total mass of 742 kg. CUORE is presently taking data at the Laboratori Nazionali del Gran Sasso, Italy, searching for the neutrinoless double beta decay of 130Te. A large custom cryogen-free cryostat allows reaching and maintaining a base temperature of about 10 mK, required for the optimal operation of the detector. This apparatus has been designed in order to achieve a low noise environment, with minimal contribution to the radioactive background for the experiment. In this paper, we present an overview of the CUORE cryostat, together with a description of all its sub-systems, focusing on the solutions identified to satisfy the stringent requirements. We briefly illustrate the various phases of the cryostat commissioning and highlight the relevant steps and milestones achieved each time. Finally, we describe the successful cooldown of CUORE.
The Cryogenic Underground Observatory for Rare Events (CUORE) is a bolometric experiment for neutrinoless double-beta decay in $^{130}$Te search, currently taking data at the underground facility of Laboratori Nazionali del Gran Sasso (LNGS). The CUORE cryostat successfully cooled down a mass of about 1 ton at $sim$7,mK, delivering an uniform and constant base temperature. This result marks a fundamental milestone in low temperature detectors techniques, opening the path for future ton-scale bolometric experiments searching for rare events. In this paper we present the CUORE cryogenic infrastructure, briefly describing its critical subsystems.
The growing interest in clarifying the controversial situation in the Dark Matter sector has driven the experimental efforts towards new ways to investigate the long-standing DAMA/LIBRA result. Among them, low-temperature calorimeters based on Na-containing scintillating crystals offer the possibility to clarify the nature of the measured signal via particle identification. Here we report the first measurement of Na-containing crystals, based on material different from NaI, i.e. Na$_2$Mo$_2$O$_7$ and Na$_2$W$_2$O$_7$, pointing out their excellent performance in term of energy resolution, light yield, and particle identification.
Compelling experimental evidences of neutrino oscillations and their implication that neutrinos are massive particles have given neutrinoless double beta decay a central role in astroparticle physics. In fact, the discovery of this elusive decay would be a major breakthrough, unveiling that neutrino and antineutrino are the same particle and that the lepton number is not conserved. It would also impact our efforts to establish the absolute neutrino mass scale and, ultimately, understand elementary particle interaction unification. All current experimental programs to search for neutrinoless double beta decay are facing with the technical and financial challenge of increasing the experimental mass while maintaining incredibly low levels of spurious background. The new concept described in this paper could be the answer which combines all the features of an ideal experiment: energy resolution, low cost mass scalability, isotope choice flexibility and many powerful handles to make the background negligible. The proposed technology is based on the use of arrays of silicon detectors cooled to 120 K to optimize the collection of the scintillation light emitted by ultra-pure crystals. It is shown that with a 54 kg array of natural CaMoO4 scintillation detectors of this type it is possible to yield a competitive sensitivity on the half-life of the neutrinoless double beta decay of 100Mo as high as ~10E24 years in only one year of data taking. The same array made of 40CaMoO4 scintillation detectors (to get rid of the continuous background coming from the two neutrino double beta decay of 48Ca) will instead be capable of achieving the remarkable sensitivity of ~10E25 years on the half-life of 100Mo neutrinoless double beta decay in only one year of measurement.
Potassium-40 ($^{40}$K) is a long-lived, naturally occurring radioactive isotope. The decay products are prominent backgrounds for many rare event searches, including those involving NaI-based scintillators. $^{40}$K also plays a role in geochronological dating techniques. The branching ratio of the electron capture directly to the ground state of argon-40 has never been measured, which can cause difficulty in interpreting certain results or can lead to lack of precision depending on the field and analysis technique. The KDK (Potassium (K) Decay (DK)) collaboration is measuring this decay. A composite method has a silicon drift detector with an enriched, thermally deposited $^{40}$K source inside the Modular Total Absorption Spectrometer. This setup has been characterized in terms of energy calibration, gamma tagging efficiency, live time and false negatives and positives. A complementary, homogeneous, method is also discussed; it employs a KSr$_2$I$_5$:Eu scintillator as source and detector.
The external shell of the CUORE cryostat is a large cryogen-free system designed to host the dilution refrigerator and the bolometers of the CUORE experiment in a low radioactivity environment. The three vessels that form the outer shell were produced and delivered to the Gran Sasso underground Laboratories in July 2012. In this paper, we describe the production techniques and the validation tests done at the production site in 2012.